Skip to main content
Published Online:https://doi.org/10.1026/0033-3042/a000427

Zusammenfassung. Die Furchtkonditionierung stellt ein bedeutsames Paradigma zur Untersuchung von emotionalen Lern- und Gedächtnisprozessen dar. Nach einer ungefähr hundertjährigen Geschichte wird deutlich, dass die Furchtkonditionierung nicht nur einen wichtigen Beitrag zur speziesübergreifenden Grundlagenforschung liefert, sondern auch unterschiedliche Anwendungsfelder zu neuen Erkenntnissen inspirieren kann. In diesem Übersichtartikel soll das grundlegende Paradigma mit verschiedenen methodischen Überlegungen zur experimentellen Durchführung vorgestellt werden. Im Anschluss werden ausgewählte Anwendungsbereiche der Furchtkonditionierung innerhalb der psychologischen Disziplinen dargestellt: die Allgemeine Psychologie wird bezüglich allgemeingültiger Gesetzmäßigkeiten von Lern- und Gedächtnisprozessen angesprochen, die Differentielle Psychologie wegen bedeutsamer interindividueller Unterschiede, die Biologische Psychologie und Neuropsychologie in Bezug auf physiologische und anatomische Grundlagen der Furchtkonditionierung, die Sozialpsychologie im Zuge der Einstellungsforschung, die Entwicklungspsychologie aufgrund altersspezifischer Aspekte sowie die Klinische Psychologie und Psychotherapie im Hinblick auf die Pathogenese von Angsterkrankungen und der Expositionstherapie. Insgesamt betrachtet hat die Furchtkonditionierung das Potenzial nicht nur unterschiedliche Disziplinen der Psychologie in synergistischer Weise zusammenzubringen, sondern auch die verschiedenen inhaltlichen Schwerpunkte zu unterstreichen.


Methodological Comments and Application Fields of Fear Conditioning in Different Psychological Disciplines

Abstract. Fear conditioning represents an important paradigm for investigating emotional learning and memory processes. With a history of about 100 years, it becomes evident that fear conditioning not only contributes significantly to cross-species basic research, but also inspires different fields of application. In this review, the basic paradigm of fear conditioning and its individual components as well as important methodological considerations for experimental implementation are introduced. Moreover, selected fields of application of the fear conditioning paradigm within psychological disciplines are discussed: Experimental psychology is addressed regarding universal regularities of learning and memory processes, differential psychology owing to considerable individual differences, biological psychology and neuropsychology concerning physiological and anatomical fundamentals of fear conditioning, social psychology in terms of attitude research; developmental psychology for age-specific aspects; and clinical psychology and psychotherapy with regard to the pathogenesis of anxiety disorders and exposure therapy. Taken together, fear conditioning has the potential not only to unite various subdisciplines within psychology in a synergistic manner, but also to emphasize their different focus.

Literatur

  • Acheson, D. T., Forsyth, J. P., Prenoveau, J. M. & Bouton, M. E. (2007). Interoceptive fear conditioning as a learning model of panic disorder: an experimental evaluation using 20 % CO(2)-enriched air in a non-clinical sample. Behaviour research and therapy, 45, 2280 – 2294. First citation in articleCrossrefGoogle Scholar

  • Adolphs, R. (2013). The biology of fear. Current biology : CB, 23 (2), 79 – 93. First citation in articleCrossrefGoogle Scholar

  • Alpers, G. W., Ruhleder, M., Walz, N., Mühlberger, A. & Pauli, P. (2005). Binocular rivalry between emotional and neutral stimuli: a validation using fear conditioning and EEG. International journal of psychophysiology, 57 (1), 25 – 32. First citation in articleCrossrefGoogle Scholar

  • Anderson, K. C. & Insel, T. R. (2006). The promise of extinction research for the prevention and treatment of anxiety disorders. Biological psychiatry, 60, 319 – 321. First citation in articleCrossrefGoogle Scholar

  • Baeyens, F., Eelen, P. & Crombez, G. (1995). Pavlovian associations are forever – on classical conditioning and extinction. Journal of psychophysiology, 9 (2), 127 – 141. First citation in articleGoogle Scholar

  • Beatty, J. & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. CacioppL. G. TassinaryG. G. Berntson (Eds.), Handbook of psychophysiology (2nd ed., pp. 142 – 162). Cambridge, UK: Cambridge University Press. First citation in articleGoogle Scholar

  • Beckers, T., Krypotos, A.-M., Boddez, Y., Effting, M. & Kindt, M. (2013). What’s wrong with fear conditioning? Biological psychology, 92 (1), 90 – 96. First citation in articleCrossrefGoogle Scholar

  • Beesdo, K., Knappe, S. & Pine, D. S. (2009). Anxiety and anxiety disorders in children and adolescents: developmental issues and implications for DSM-V. The Psychiatric clinics of North America, 32, 483 – 524. First citation in articleCrossrefGoogle Scholar

  • Benke, C., Alius, M. G., Hamm, A. O. & Pane-Farre, C. A. (2018). Cue and context conditioning to respiratory threat: effects of suffocation fear and implications for the etiology of panic disorder. International journal of psychophysiology, 124, 33 – 42. First citation in articleCrossrefGoogle Scholar

  • Bergstrom, H. C. (2016). The neurocircuitry of remote cued fear memory. Neuroscience and biobehavioral reviews, 71, 409 – 417. First citation in articleCrossrefGoogle Scholar

  • Berntson, G. G., Quigley, K. S., Norman, G. J. & Lozano, D. L. (2017). Cardiovascular psychophysiology. In J. T. CacioppL. G. TassinaryG. G. Berntson (Eds.), Handbook of psychophysiology (4th ed., pp. 183 – 216). Cambridge, UK: Cambridge University Press. First citation in articleGoogle Scholar

  • Blechert, J., Michael, T., Williams, S. L., Purkis, H. M. & Wilhelm, F. H. (2008). When two paradigms meet: does evaluative learning extinguish in differential fear conditioning? Learning and motivation, 39, 58 – 70. First citation in articleCrossrefGoogle Scholar

  • Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V. & van Boxtel, A. (2005). Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42 (1), 1 – 15. First citation in articleCrossrefGoogle Scholar

  • Boddez, Y., Baeyens, F., Luyten, L., Vansteenwegen, D., Hermans, D. & Beckers, T. (2013). Rating data are underrated: validity of US expectancy in human fear conditioning. Journal of behavior therapy and experimental psychiatry, 44, 201 – 206. First citation in articleCrossrefGoogle Scholar

  • Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E. et al. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49, 1017 – 1034. First citation in articleCrossrefGoogle Scholar

  • Bouton, M. E. (2004). Context and behavioral processes in extinction. Learning & memory, 11, 485 – 494. First citation in articleCrossrefGoogle Scholar

  • Bouton, M. E. (2014). Why behavior change is difficult to sustain. Preventive medicine, 68, 29 – 36. First citation in articleCrossrefGoogle Scholar

  • Bouton, M. E. & Bolles, R. C. (1979). Role of conditioned contextual stimuli in reinstatement of extinguished fear. Journal of experimental psychology, 5, 368 – 378. First citation in articleGoogle Scholar

  • Bouton, M. E. & Moody, E. W. (2004). Memory processes in classical conditioning. Neuroscience and biobehavioral reviews, 28, 663 – 674. First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M. & Lang, P. J. (2000). Measuring emotion: behavior, feeling, and physiology. In R. D. LaneL. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 242 – 276). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Buchanan, T. W. (2007). Retrieval of emotional memories. Psychological bulletin, 133, 761 – 779. First citation in articleCrossrefGoogle Scholar

  • Büchel, C., Morris, J. S., Dolan, R. J. & Friston, K. J. (1998). Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron, 20, 947 – 957. First citation in articleCrossrefGoogle Scholar

  • Cover, K. K., Maeng, L. Y., Lebron-Milad, K. & Milad, M. R. (2014). Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Translational psychiatry, 4., e422. First citation in articleCrossrefGoogle Scholar

  • Craske, M. G., Hermans, D. & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373 (1742) First citation in articleCrossrefGoogle Scholar

  • Craske, M. G., Treanor, M., Conway, C. C., Zbozinek, T. & Vervliet, B. (2014). Maximizing exposure therapy: an inhibitory learning approach. Behaviour research and therapy, 58, 10 – 23. First citation in articleCrossrefGoogle Scholar

  • Davis, M., Walker, D. L., Miles, L. & Grillon, C. (2010). Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35 (1), 105 – 135. First citation in articleCrossrefGoogle Scholar

  • Dawson, M. E., Schell, A. M. & Filion, D. L. (2017). The electrodermal system. In J. T. CacioppL. G. TassinaryG. G. Berntson (Eds.), Handbook of psychophysiology (4th ed., pp. 217 – 243). Cambridge, UK: Cambridge University Press. First citation in articleGoogle Scholar

  • De Houwer, J., Thomas, S. & Baeyens, F. (2001). Associative learning of likes and dislikes: a review of 25 years of research on human evaluative conditioning. Psychological bulletin, 127, 853 – 869. First citation in articleCrossrefGoogle Scholar

  • Delgado, M. R., Nearing, K. I., LeDoux, J. E. & Phelps, E. A. (2008). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 59, 829 – 838. First citation in articleCrossrefGoogle Scholar

  • Delgado, M. R., Olsson, A. & Phelps, E. A. (2006). Extending animal models of fear conditioning to humans. Biological psychology, 73 (1), 39 – 48. First citation in articleCrossrefGoogle Scholar

  • Diekhof, E. K., Geier, K., Falkai, P. & Gruber, O. (2011). Fear is only as deep as the mind allows: a coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. NeuroImage, 58, 275 – 285. First citation in articleCrossrefGoogle Scholar

  • Domjan, M. (2005). Pavlovian conditioning: a functional perspective. Annual review of psychology, 56, 179 – 206. First citation in articleCrossrefGoogle Scholar

  • Duits, P., Cath, D. C., Lissek, S., Hox, J. J., Hamm, A. O., Engelhard, I. M. et al. (2015). Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depression and anxiety, 32, 239 – 253. First citation in articleCrossrefGoogle Scholar

  • Fanselow, M. S. & Poulos, A. M. (2005). The neuroscience of mammalian associative learning. Annual review of psychology, 56, 207 – 234. First citation in articleCrossrefGoogle Scholar

  • Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin & Review, 1, 429 – 438. First citation in articleCrossrefGoogle Scholar

  • Fitzgerald, H. E. & Brackbill, Y. (1976). Classical conditioning in infancy: development and constraints. Psychological bulletin, 83, 353 – 376. First citation in articleCrossrefGoogle Scholar

  • Forcadell, E., Torrents-Rodas, D., Vervliet, B., Leiva, D., Tortella-Feliu, M. & Fullana, M. A. (2017). Does fear extinction in the laboratory predict outcomes of exposure therapy? A treatment analog study. International journal of psychophysiology, 121, 63 – 71. First citation in articleCrossrefGoogle Scholar

  • Forsyth, J. P. & Eifert, G. H. (1998). Response intensity in content-specific fear conditioning comparing 20 % versus 13 % CO2-enriched air as unconditioned stimuli. Journal of abnormal psychology, 107, 291 – 304. First citation in articleCrossrefGoogle Scholar

  • Fullana, M. A., Harrison, B. J., Soriano-Mas, C., Vervliet, B., Cardoner, N., Avila-Parcet, A. et al. (2015). Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Molecular psychiatry, 21, 500 – 508. First citation in articleCrossrefGoogle Scholar

  • Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet, O. et al. (2018). Fear extinction in the human brain: a meta-analysis of fMRI studies in healthy participants. Neuroscience and biobehavioral reviews, 10 (88), 16 – 25. First citation in articleCrossrefGoogle Scholar

  • Garcia, J. & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic science, 4 (3), 123 – 124. First citation in articleCrossrefGoogle Scholar

  • Gawronski, B. & Bodenhausen, G. V. (2006). Associative and propositional processes in evaluation: an integrative review of implicit and explicit attitude change. Psychological bulletin, 132, 692 – 731. First citation in articleCrossrefGoogle Scholar

  • Gerwig, M., Kolb, F. P. & Timmann, D. (2007). The involvement of the human cerebellum in eyeblink conditioning. Cerebellum, 6 (1), 38 – 57. First citation in articleCrossrefGoogle Scholar

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F. 3., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L. & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174 – 8179. First citation in articleCrossrefGoogle Scholar

  • Granholm, E. & Steinhauer, S. R. (2004). Pupillometric measures of cognitive and emotional processes. International journal of psychophysiology, 52 (1), 1 – 6. First citation in articleCrossrefGoogle Scholar

  • Grillon, C., Baas, J. M. P., Cornwell, B. & Johnson, L. (2006). Context conditioning and behavioral avoidance in a virtual reality environment: effect of predictability. Biological psychiatry, 60, 752 – 759. First citation in articleCrossrefGoogle Scholar

  • Haaker, J., Golkar, A., Hermans, D. & Lonsdorf, T. B. (2014). A review on human reinstatement studies: an overview and methodological challenges. Learning & memory, 21, 424 – 440. First citation in articleCrossrefGoogle Scholar

  • Halbeisen, G., Walther, E. & Schneider, M. (2017). Evaluative conditioning and the development of attitudes in early childhood. Child Development, 88, 1536 – 1543. First citation in articleCrossrefGoogle Scholar

  • Hamm, A., Wendt, J. & Volkmann, M. (2017). Extinktion: Neurowissenschaftliche Erkenntnisse zur Frage, wie Menschen sich ändern. Verhaltenstherapie, 27 (1), 16 – 26. First citation in articleCrossrefGoogle Scholar

  • Hamm, A. O., Vaitl, D. & Lang, P. J. (1989). Fear conditioning, meaning, and belongingness: a selective association analysis. Journal of abnormal psychology, 98, 395 – 406. First citation in articleCrossrefGoogle Scholar

  • Hartley, C. A. & Phelps, E. A. (2010). Changing fear: The neurocircuitry of emotion regulation. Neuropsychopharmacology, 35, 136 – 146. First citation in articleCrossrefGoogle Scholar

  • Hermann, A., Kupper, Y., Schmitz, A., Walter, B., Vaitl, D., Hennig, J. et al. (2012). Functional gene polymorphisms in the serotonin system and traumatic life events modulate the neural basis of fear acquisition and extinction. PLoS ONE, 7 (9)., e44352. First citation in articleCrossrefGoogle Scholar

  • Herry, C., Ferraguti, F., Singewald, N., Letzkus, J. J., Ehrlich, I. & Luethi, A. (2010). Neuronal circuits of fear extinction. European journal of neuroscience, 31, 599 – 612. First citation in articleCrossrefGoogle Scholar

  • Hilgard, E. R. & Marquis, D. G. (1935). Acquisition, extinction, and retention of conditioned lid responses to light in dogs. Journal of comparative psychology (19), 29 – 58. First citation in articleCrossrefGoogle Scholar

  • Hodes, R. L., Cook, E. W. I. & Lang, P. J. (1985). Individual differences in autonomic response: conditioned association or conditioned fear? Psychophysiology, 22, 545 – 560. First citation in articleCrossrefGoogle Scholar

  • Hofmann, W., de Houwer, J., Perugini, M., Baeyens, F. & Crombez, G. (2010). Evaluative conditioning in humans: a meta-analysis. Psychological bulletin, 136, 390 – 421. First citation in articleCrossrefGoogle Scholar

  • Holtz, K., Pane-Farre, C. A., Wendt, J., Lotze, M. & Hamm, A. O. (2012). Brain activation during anticipation of interoceptive threat. NeuroImage, 61, 857 – 865. First citation in articleCrossrefGoogle Scholar

  • Hütter, M., Sweldens, S., Stahl, C., Unkelbach, C. & Klauer, K. C. (2012). Dissociating contingency awareness and conditioned attitudes: evidence of contingency-unaware evaluative conditioning. Journal of experimental psychology: General, 141, 539 – 557. First citation in articleCrossrefGoogle Scholar

  • Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S. & Turpin, G. (1981). Committee report: publication guidelines for heart rate studies in man. Psychophysiology, 18, 226 – 231. First citation in articleCrossrefGoogle Scholar

  • Junghöfer, M., Rehbein, M. A., Maitzen, J., Schindler, S. & Kissler, J. (2017). An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses. Social cognitive and affective neuroscience, 12, 695 – 705. First citation in articleCrossrefGoogle Scholar

  • Kehoe, E. J. & Macrae, M. (2002). Fundamental behavioral methods and findings in classical conditioning. In J. W. Moore (Eds.), A neuroscientist’s guide to classical conditioning (pp. 171 – 231). New York, NY: Springer New York. First citation in articleGoogle Scholar

  • Kim, J. H. & Richardson, R. (2010). New findings on extinction of conditioned fear early in development: theoretical and clinical implications. Biological psychiatry, 67, 297 – 303. First citation in articleCrossrefGoogle Scholar

  • Klucken, T., Alexander, N., Schweckendiek, J., Merz, C. J., Kagerer, S., Osinsky, R. et al. (2013). Individual differences in neural correlates of fear conditioning as a function of 5-HTTLPR and stressful life events. Social cognitive and affective neuroscience, 8, 318 – 325. First citation in articleCrossrefGoogle Scholar

  • LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron, 20, 937 – 945. First citation in articleCrossrefGoogle Scholar

  • Lang, P. J. (1995). The emotion probe. Studies of motivation and attention. American psychologist, 50, 372 – 385. First citation in articleCrossrefGoogle Scholar

  • Lang, P. J., Davis, M. & Öhman, A. (2000). Fear and anxiety: animal models and human cognitive psychophysiology. Journal of affective disorders, 61, 137 – 159. First citation in articleCrossrefGoogle Scholar

  • Lau, J. Y. F., Lissek, S., Nelson, E. E., Lee, Y., Roberson-Nay, R., Poeth, K. et al. (2008). Fear conditioning in adolescents with anxiety disorders: results from a novel experimental paradigm. Journal of the American Academy of Child and Adolescent Psychiatry, 47 (1), 94 – 102. First citation in articleCrossrefGoogle Scholar

  • LeDoux, J. & Daw, N. D. (2018). Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature reviews neuroscience, 19, 269 – 282. First citation in articleCrossrefGoogle Scholar

  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience, 23, 155 – 184. First citation in articleCrossrefGoogle Scholar

  • LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences of the United States of America, 111, 2871 – 2878. First citation in articleCrossrefGoogle Scholar

  • Lipp, O. V. (2007). Human fear learning: contemporary procedures and measurement. In M. G. Craske (Eds.), Fear and learning: from basic processes to clinical implications (pp. 37 – 51). Washington, DC: American Psychological Association. https://doi.org/10.1037/11474-002 First citation in articleGoogle Scholar

  • Lissek, S., Biggs, A. L., Rabin, S. J., Cornwell, B. R., Alvarez, R. P., Pine, D. S. & Grillon, C. (2008). Generalization of conditioned fear-potentiated startle in humans: experimental validation and clinical relevance. Behaviour research and therapy, 46, 678 – 687. First citation in articleCrossrefGoogle Scholar

  • Lissek, S., Levenson, J., Biggs, A. L., Johnson, L. L., AMELI, R., Pine, D. S. et al. (2008). Elevated fear conditioning to socially relevant unconditioned stimuli in social anxiety disorder. The American journal of psychiatry, 165 (1), 124 – 132. First citation in articleCrossrefGoogle Scholar

  • Lissek, S., Pine, D. S. & Grillon, C. (2006). The strong situation: a potential impediment to studying the psychobiology and pharmacology of anxiety disorders. Biological psychology, 72, 265 – 270. First citation in articleCrossrefGoogle Scholar

  • Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C. et al. (2005). Classical fear conditioning in the anxiety disorders: a meta-analysis. Behaviour research and therapy, 43, 1391 – 1424. First citation in articleCrossrefGoogle Scholar

  • Lissek, S., Rabin, S. J., McDowell, D. J., Dvir, S., Bradford, D. E., Geraci, M. et al. (2009). Impaired discriminative fear-conditioning resulting from elevated fear responding to learned safety cues among individuals with panic disorder. Behaviour research and therapy, 47 (2), 111 – 118. First citation in articleCrossrefGoogle Scholar

  • Lonsdorf, T. B. & Baas, J. M. P. (2015). Genetics in experimental psychopathology: from laboratory models to therapygenetics. Where do we go from here? Psychopathology Review, 4, 169 – 188. First citation in articleGoogle Scholar

  • Lonsdorf, T. B. & Kalisch, R. (2011). A review on experimental and clinical genetic associations studies on fear conditioning, extinction and cognitive-behavioral treatment. Translational psychiatry, 1., e41. First citation in articleCrossrefGoogle Scholar

  • Lonsdorf, T. B., Menz, M. M., Andreatta, M., Fullana, M. A., Golkar, A., Haaker, J. et al. (2017). Don’t fear ‘fear conditioning’: methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neuroscience and biobehavioral reviews, 77, 247 – 285. First citation in articleCrossrefGoogle Scholar

  • Lonsdorf, T. B. & Merz, C. J. (2017). More than just noise. Inter-individual differences in fear acquisition, extinction and return of fear in humans – biological, experiential, temperamental factors, and methodological pitfalls. Neuroscience and biobehavioral reviews, 80, 703 – 728. First citation in articleCrossrefGoogle Scholar

  • Lonsdorf, T. B. & Richter, J. (2017). Challenges of fear conditioning research in the age of RDoC. Zeitschrift fur Psychologie / Journal of Psychology, 225, 189 – 199. First citation in articleLinkGoogle Scholar

  • Lueken, U., Straube, B., Reinhardt, I., Maslowski, N. I., Wittchen, H.-U., Strohle, A. et al. (2014). Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobia. Psychological medicine, 44, 381 – 394. First citation in articleCrossrefGoogle Scholar

  • Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual review of neuroscience, 24, 897 – 931. First citation in articleCrossrefGoogle Scholar

  • Maren, S. (2005). Building and burying fear memories in the brain. Neuroscientist, 11 (1), 89 – 99. First citation in articleCrossrefGoogle Scholar

  • Maren, S. (2014). Nature and causes of the immediate extinction deficit: a brief review. Neurobiology of learning and memory, 113, 19 – 24. First citation in articleCrossrefGoogle Scholar

  • Maren, S., Phan, K. L. & Liberzon, I. (2013). The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature reviews neuroscience, 14, 417 – 428. First citation in articleCrossrefGoogle Scholar

  • Maren, S. & Quirk, G. J. (2004). Neuronal signalling of fear memory. Nature reviews neuroscience, 5, 844 – 852. First citation in articleCrossrefGoogle Scholar

  • Marin, M.-F., Zsido, R. G., Song, H., Lasko, N. B., Killgore, W. D. S., Rauch, S. L. et al. (2017). Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA psychiatry, 74, 622 – 631. First citation in articleCrossrefGoogle Scholar

  • Mauss, I. B. & Robinson, M. D. (2009). Measures of emotion: a review. Cognition & emotion, 23, 209 – 237. First citation in articleCrossrefGoogle Scholar

  • Mechias, M.-L., Etkin, A. & Kalisch, R. (2010). A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage, 49, 1760 – 1768. First citation in articleCrossrefGoogle Scholar

  • Merz, C. J., Kinner, V. L. & Wolf, O. T. (2018). Let’s talk about sex… differences in human fear conditioning. Current opinion in behavioral sciences, 23, 7 – 12. First citation in articleCrossrefGoogle Scholar

  • Merz, C. J. & Wolf, O. T. (2017). Sex differences in stress effects on emotional learning. Journal of neuroscience research, 95 (1 – 2), 93 – 105. First citation in articleCrossrefGoogle Scholar

  • Milad, M. R. & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: ten years of progress. Annual review of psychology, 63, 129 – 151. First citation in articleCrossrefGoogle Scholar

  • Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J. & Rauch, S. L. (2007). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological psychiatry, 62, 446 – 454. First citation in articleCrossrefGoogle Scholar

  • Mineka, S. & Zinbarg, R. (2006). A contemporary learning theory perspective on the etiology of anxiety disorders – it’s not what you thought it was. American psychologist, 61 (1), 10 – 26. First citation in articleCrossrefGoogle Scholar

  • Mineka, S. & Oehlberg, K. (2008). The relevance of recent developments in classical conditioning to understanding the etiology and maintenance of anxiety disorders. Acta psychologica, 127, 567 – 580. First citation in articleCrossrefGoogle Scholar

  • Miskovic, V. & Keil, A. (2012). Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning. Psychophysiology, 49, 1230 – 1241. First citation in articleCrossrefGoogle Scholar

  • Misslin, R. (2003). The defense system of fear: behavior and neurocircuitry. Neurophysiologie clinique, 33 (2), 55 – 66. First citation in articleCrossrefGoogle Scholar

  • Mitchell, C. J., de Houwer, J. & Lovibond, P. F. (2009). The propositional nature of human associative learning. The Behavioral and brain sciences, 32, 183 – 246. First citation in articleCrossrefGoogle Scholar

  • Mohr, C. & Schneider, S. (2013). Anxiety disorders. European child & adolescent psychiatry, 22 Suppl 1, 17 – 22. First citation in articleCrossrefGoogle Scholar

  • Mueller, E. M., Panitz, C., Hermann, C. & Pizzagalli, D. A. (2014). Prefrontal oscillations during recall of conditioned and extinguished fear in humans. The Journal of neuroscience, 34, 7059 – 7066. First citation in articleCrossrefGoogle Scholar

  • Myers, K. M. & Davis, M. (2002). Behavioral and neural analysis of extinction. Neuron, 36, 567 – 584. First citation in articleCrossrefGoogle Scholar

  • Navarrete, C. D., McDonald, M. M., Asher, B. D., Kerr, N. L., Yokota, K., Olsson, A. et al. (2012). Fear is readily associated with an out-group face in a minimal group context. Evolution and Human Behavior, 33, 590 – 593. First citation in articleCrossrefGoogle Scholar

  • Navarrete, C. D., Olsson, A., Ho, A. K., Mendes, W. B., Thomsen, L. & Sidanius, J. (2009). Fear extinction to an out-group face: the role of target gender. Psychological science, 20, 155 – 158. First citation in articleCrossrefGoogle Scholar

  • Nees, F., Heinrich, A. & Flor, H. (2015). A mechanism-oriented approach to psychopathology: the role of Pavlovian conditioning. International journal of psychophysiology, 98 (2 Pt 2), 351 – 364. First citation in articleCrossrefGoogle Scholar

  • Olsson, A., Ebert, J. P., Banaji, M. R. & Phelps, E. A. (2005). The role of social groups in the persistence of learned fear. Science, 309 (5735), 785 – 787. First citation in articleCrossrefGoogle Scholar

  • Onat, S. & Büchel, C. (2015). The neuronal basis of fear generalization in humans. Nature neuroscience, 18, 1811 – 1818. First citation in articleCrossrefGoogle Scholar

  • Öst, L. G. (1985). Ways of acquiring phobias and outcome of behavioral treatments. Behaviour research and therapy, 23, 683 – 689. First citation in articleCrossrefGoogle Scholar

  • Pappens, M., van den Bergh, O., Vansteenwegen, D., Ceunen, E., Peuter, S. de & van Diest, I. (2013). Learning to fear obstructed breathing: comparing interoceptive and exteroceptive cues. Biological psychology, 92 (1), 36 – 42. First citation in articleCrossrefGoogle Scholar

  • Pavlov, I. P. (1927). Conditioned reflexes. London: Oxford University Press. First citation in articleGoogle Scholar

  • Pearce, J. M. (1997). Animal learning and cognition: an introduction (2nd ed.). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Pejic, T., Hermann, A., Vaitl, D. & Stark, R. (2013). Social anxiety modulates amygdala activation during social conditioning. Social cognitive and affective neuroscience, 8, 267 – 276. First citation in articleCrossrefGoogle Scholar

  • Pessoa, L. & Adolphs, R. (2010). Emotion processing and the amygdala: from a ʻlow road’ to ʻmany roads’ of evaluating biological significance. Nature reviews neuroscience, 11, 773 – 783. First citation in articleCrossrefGoogle Scholar

  • Pine, D. S., Fyer, A. J., Grun, J., Phelps, E. A., Szeszko, P. R., Koda, V. et al. (2001). Methods for developmental studies of fear conditioning circuitry. Biological psychiatry, 50, 225 – 228. First citation in articleCrossrefGoogle Scholar

  • Pittig, A., Treanor, M., LeBeau, R. T. & Craske, M. G. (2018). The role of associative fear and avoidance learning in anxiety disorders: gaps and directions for future research. Neuroscience and biobehavioral reviews, 88, 117 – 140. First citation in articleCrossrefGoogle Scholar

  • Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R. et al. (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature reviews neuroscience, 18 (2), 115 – 126. First citation in articleCrossrefGoogle Scholar

  • Poldrack, R. A., Fletcher, P. C., Henson, R. N. A., Worsley, K. J., Brett, M. & Nichols, T. E. (2008). Guidelines for reporting an fMRI study. NeuroImage, 40 (2), 409 – 414. First citation in articleCrossrefGoogle Scholar

  • Quirk, G. J. & Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropharmacology, 33 (1), 56 – 72. First citation in articleGoogle Scholar

  • Rehbein, M. A., Steinberg, C., Wessing, I., Pastor, M. C., Zwitserlood, P., Keuper, K. et al. (2014). Rapid plasticity in the prefrontal cortex during affective associative learning. PloS one, 9 (10)., e110720. First citation in articleCrossrefGoogle Scholar

  • Rehbein, M. A., Wessing, I., Zwitserlood, P., Steinberg, C., Eden, A. S., Dobel, C. & Junghöfer, M. (2015). Rapid prefrontal cortex activation towards aversively paired faces and enhanced contingency detection are observed in highly trait-anxious women under challenging conditions. Frontiers in behavioral neuroscience, 9, 155. First citation in articleGoogle Scholar

  • Rescorla, R. A. (1988). Behavioral studies of Pavlovian conditioning. Annual review of neuroscience, 11, 329 – 352. First citation in articleCrossrefGoogle Scholar

  • Rescorla, R. A. (2004). Spontaneous recovery. Learning & memory, 11, 501 – 509. First citation in articleCrossrefGoogle Scholar

  • Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In A. H. BlackW. F. Prokasy (Eds.), Classical conditioning II: current research and theory (pp. 64 – 99). New York, NY: Appleton-Century-Crofts. First citation in articleGoogle Scholar

  • Rowe, M. K. & Craske, M. G. (1998). Effects of varied-stimulus exposure training on fear reduction and return of fear. Behaviour research and therapy, 36, 719 – 734. First citation in articleCrossrefGoogle Scholar

  • Scheveneels, S., Boddez, Y., Vervliet, B. & Hermans, D. (2016). The validity of laboratory-based treatment research: bridging the gap between fear extinction and exposure treatment. Behaviour research and therapy, 86, 87 – 94. First citation in articleCrossrefGoogle Scholar

  • Schiele, M. A., Reinhard, J., Reif, A., Domschke, K., Romanos, M., Deckert, J. et al. (2016). Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults. Developmental Psychobiology, 58, 471 – 481. First citation in articleCrossrefGoogle Scholar

  • Schweckendiek, J., Klucken, T., Merz, C. J., Tabbert, K., Walter, B., Ambach, W. et al. (2011). Weaving the (neuronal) web: Fear learning in spider phobia. NeuroImage, 54 (1), 681 – 688. First citation in articleCrossrefGoogle Scholar

  • Shechner, T., Hong, M., Britton, J. C., Pine, D. S. & Fox, N. A. (2014). Fear conditioning and extinction across development: evidence from human studies and animal models. Biological psychology, 100, 1 – 12. First citation in articleCrossrefGoogle Scholar

  • Shiban, Y., Schelhorn, I., Pauli, P. & Mühlberger, A. (2015). Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: a randomized clinical trial in virtual reality. Behaviour research and therapy, 71, 45 – 53. First citation in articleCrossrefGoogle Scholar

  • Shiban, Y., Wittmann, J., Weissinger, M. & Mühlberger, A. (2015). Gradual extinction reduces reinstatement. Frontiers in behavioral neuroscience, 9, 254. First citation in articleGoogle Scholar

  • Sperl, M. F. J., Panitz, C., Rosso, I. M., Dillon, D. G., Kumar, P., Hermann, A. et al. (2018). Fear extinction recall modulates human frontomedial theta and amygdala activity. Cerebral cortex. First citation in articleGoogle Scholar

  • Stockhorst, U. & Antov, M. I. (2016). Modulation of fear extinction by stress, stress hormones and estradiol: a review. Frontiers in behavioral neuroscience, 9, 359. First citation in articleGoogle Scholar

  • Struyf, D., Zaman, J., Hermans, D. & Vervliet, B. (2017). Gradients of fear: how perception influences fear generalization. Behaviour research and therapy, 93, 116 – 122. First citation in articleCrossrefGoogle Scholar

  • Sumner, J. A., Powers, A., Jovanovic, T. & Koenen, K. C. (2016). Genetic influences on the neural and physiological bases of acute threat: a research domain criteria (RDoC) perspective. American journal of medical genetics part B- neuropsychiatric genetics, 171B (1), 44 – 64. First citation in articleCrossrefGoogle Scholar

  • Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge: MIT Press. First citation in articleGoogle Scholar

  • Todd, T. P., Vurbic, D. & Bouton, M. E. (2014). Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning. Neurobiology of learning and memory, 108, 52 – 64. First citation in articleCrossrefGoogle Scholar

  • Vaitl, D. & Lipp, O. V. (1997). Latent inhibition and autonomic responses: a psychophysiological approach. Behavioural brain research, 88 (1), 85 – 93. First citation in articleCrossrefGoogle Scholar

  • Vansteenwegen, D., Crombez, G., Baeyens, F. & Eelen, P. (1998). Extinction in fear conditioning: effects on startle modulation and evaluative self-reports. Psychophysiology, 35, 729 – 736. First citation in articleCrossrefGoogle Scholar

  • Vervliet, B. & Raes, F. (2013). Criteria of validity in experimental psychopathology: application to models of anxiety and depression. Psychological medicine, 43, 2241 – 2244. First citation in articleCrossrefGoogle Scholar

  • Vervliet, B., Baeyens, F., van den Bergh, O. & Hermans, D. (2013). Extinction, generalization, and return of fear: a critical review of renewal research in humans. Biological psychology, 92 (1), 51 – 58. First citation in articleCrossrefGoogle Scholar

  • Vervliet, B., Craske, M. G. & Hermans, D. (2013). Fear extinction and relapse: state of the art. Annual review of clinical psychology, 9, 215 – 248. First citation in articleCrossrefGoogle Scholar

  • Walther, E., Nagengast, B. & Trasselli, C. (2005). Evaluative conditioning in social psychology: facts and speculations. Cognition & emotion, 19, 175 – 196. First citation in articleCrossrefGoogle Scholar

  • Walther, E., Weil, R. & Düsing, J. (2011). The role of evaluative conditioning in attitude formation. Current directions in psychological science, 20, 192 – 196. First citation in articleCrossrefGoogle Scholar

  • Wasserman, E. A. & Miller, R. R. (1997). What’s elementary about associative learning? Annual review of psychology, 48, 573 – 607. First citation in articleCrossrefGoogle Scholar

  • Watson, J. B. & Raynor, R. (1920). Conditioned emotional reactions. Journal of experimental psychology, 3, 1 – 14. First citation in articleCrossrefGoogle Scholar

  • Wegerer, M., Blechert, J., Kerschbaum, H. & Wilhelm, F. H. (2013). Relationship between fear conditionability and aversive memories: evidence from a novel conditioned-intrusion paradigm. PLoS ONE, 8 (11)., e79025. First citation in articleCrossrefGoogle Scholar

  • Wegerer, M., Kerschbaum, H., Blechert, J. & Wilhelm, F. H. (2014). Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life. Neurobiology of learning and memory, 116, 145 – 154. First citation in articleCrossrefGoogle Scholar

  • Wieser, M. J., Miskovic, V., Rausch, S. & Keil, A. (2014). Different time course of visuocortical signal changes to fear-conditioned faces with direct or averted gaze: a ssVEP study with single-trial analysis. Neuropsychologia, 62, 101 – 110. First citation in articleCrossrefGoogle Scholar

  • Wiggert, N., Wilhelm, F. H., Boger, S., Georgii, C., Klimesch, W. & Blechert, J. (2017). Social Pavlovian conditioning: Short- and long-term effects and the role of anxiety and depressive symptoms. Social cognitive and affective neuroscience, 12, 329 – 339. First citation in articleCrossrefGoogle Scholar