Skip to main content
Articles

Relation Between Level of Prefrontal Activity and Subject's Performance

Published Online:https://doi.org/10.1027//0269-8803.13.2.117

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.

References

  • Birbaumer, N. , Elbert, T. , Canavan, A.G.M. , Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1– 41 . First citation in articleCrossrefGoogle Scholar

  • Casini, L. , Macar, F. (1996). Prefrontal slow potentials in temporal compared to nontemporal tasks. Journal of Psychophysiology, 10, 252– 264 . First citation in articleGoogle Scholar

  • Casini, L. , Macar, F. (1997). Effect of attention manipulation on judgements of duration and of intensity in the visual modality. Memory and Cognition, 25, 812– 818 . First citation in articleCrossrefGoogle Scholar

  • Elbert, T. , Ulrich, R. , Rockstroh, B. , Lutzenberger, W. (1991). The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology, 28, 648– 655 . First citation in articleCrossrefGoogle Scholar

  • Gordon, H. (1978). Left hemisphere dominance for rhythmic elements in dichotically presented melodies. Cortex, 14, 58– 70 . First citation in articleCrossrefGoogle Scholar

  • Geisser, S. , Greenhouse, S.W. (1958). An extension of Box's results on the use of the F distribution in multivariate analysis. Annals of Mathematical Statistics, 29, 885– 891 . First citation in articleCrossrefGoogle Scholar

  • Gevins, A.S. , Morgan, N.H. , Bessler, S.L. , Cutillo, B.A. , White, R.M. , Illes, J. , Greer, D.S. , Doyle, J.C. , Zeitlin, G.M. (1987). Human neuroelectric patterns predict performance accuracy. Science, 235, 580– 585 . First citation in articleCrossrefGoogle Scholar

  • Haier, R.J. , Siegel, B.V. , MacLachlan, A. , Soderling, E. , Lottenberg, S. , Buchsbaum, M.S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomography study. Brain Research, 570, 134– 143 . First citation in articleCrossrefGoogle Scholar

  • Hjörth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography & Clinical Neurophysiology, 39, 526– 530 . First citation in articleCrossrefGoogle Scholar

  • Jasper, H.H. (1958). The 10-20 electrode system of the international federation. Electroencephalography & Clinical Neurophysiology, 10, 371– 375 . First citation in articleGoogle Scholar

  • Johnson, R. (1988). The amplitude of the P300 component of the event-related potential: Review and synthesis. In P.K. Ackles, J.R. Jennings, & M.G.H. Coles (Eds.), Advances in psychophysiology, vol. 3 (pp. 69-137). New-York: JAI Press . First citation in articleGoogle Scholar

  • Ladanyi, M. , Dubrovsky, B. (1985). CNV and time estimation. International Journal of Neurosciences, 26, 253– 257 . First citation in articleCrossrefGoogle Scholar

  • Law, S.K. , Rohrbaugh, J.W. , Adams, C.A. , Eckardt, M. (1993). Improving spatial and temporal resolution in evoked EEG responses using surface Laplacians. Electroencephalography & Clinical Neurophysiology, 88, 309– 322 . First citation in articleCrossrefGoogle Scholar

  • Macar, F. , Grondin, S. , Casini, L. (1994). Controlled attention-sharing influences time estimation. Memory and Cognition, 22, 673– 686 . First citation in articleCrossrefGoogle Scholar

  • Macar, F. , Vitton, N. (1979). Contingent Negative Variation and accuracy of time estimation: A study on cats. Electroencephalography & Clinical Neurophysiology, 56, 696– 698 . First citation in articleGoogle Scholar

  • Maquet, P. , Lejeune, H. , Pouthas, V. , Bonnet, M. , Casini, L. , Macar, F. , Timsit-Berthier, M. , Vidal, F. , Ferrara, A. , Degueldre, C. , Quaglia, L. , Delfiore, G. , Luxen, A. , Woods, R. , Mazziotta, J.C. , Comar, D. (1996). Brain activation induced by estimation of duration. A PET study. NeuroImage, 3, 119– 126 . First citation in articleCrossrefGoogle Scholar

  • McAdam, D.W. (1966). Slow potential changes recorded from human brain during learning of a temporal interval. Psychonomic Science, 6, 435– 436 . First citation in articleCrossrefGoogle Scholar

  • McKay, D.M. (1983). On-line source density computation with a minimum of electrodes. Electroencephalography & Clinical Neurophysiology, 56, 696– 698 . First citation in articleCrossrefGoogle Scholar

  • McKay, D.M. (1984). Source density analysis of scalp potentials during evaluated action. I. Coronal distribution. Experimental Brain Research, 54, 73– 85 . First citation in articleGoogle Scholar

  • Näätänen, R. (1992). Attention and brain function . Hillsdale: Erlbaum . First citation in articleGoogle Scholar

  • Natale, M. (1977). Perception of nonlinguistic auditory rhythms by speech hemisphere. Brain and Language, 4, 32– 44 . First citation in articleCrossrefGoogle Scholar

  • Niki, H. , Watanabe, M. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research, 171, 213– 224 . First citation in articleCrossrefGoogle Scholar

  • Pardo, J.V. , Fox, P.T. , Raichle, M.E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61– 64 . First citation in articleCrossrefGoogle Scholar

  • Perrin, F. , Pernier, J. , Bertrand, O. , Echallier, J.F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography & Clinical Neurophysiology, 72, 184– 187 . First citation in articleCrossrefGoogle Scholar

  • Posner, M.I. , Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25– 42 . First citation in articleCrossrefGoogle Scholar

  • Raichle, M.E. , Fiez, J.A. , Videen, T.O. , MacLeod, A.M. , Pardo, J.V. , Fox, P.T. , Petersen, S.E. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 1 8– 26 . First citation in articleCrossrefGoogle Scholar

  • Roland, E. (1993). Brain activation . New York: Wiley & Sons . First citation in articleGoogle Scholar

  • Szymanski, L. , Csachowska-Sieszycka, B. , Sobotka, S. (1982). Task influence on hemispheric differences in the stimulus duration evaluation (time perception). Polish Psychological Bulletin, 13, 255– 265 . First citation in articleGoogle Scholar

  • Vidal, F. , Bonnet, M. , Macar, F. (1991). Etude des fonctions mentales par l'analyse topographique des activités cérébrales. In B. Renault & F. Macar (Eds.), Imagerie cérébrale en psychologie cognitive (pp. 121-133). Psychologie Française, 37-2 . First citation in articleGoogle Scholar

  • Zakay, D. (1989). Subjective and attentional resource allocation: an integrated model of time estimation. In I. Levin & D. Zakay (Eds.), Time and human cognition (pp. 365-397). North Holland: Elsevier Science . First citation in articleGoogle Scholar

  • Zakay, D. , Block, A.R. (1996). The role of attention in time estimation processes. In M.A. Pastor & J. Artieda (Eds.), Time, internal clocks and movement (pp. 143-164). North Holland: Elsevier Science . First citation in articleCrossrefGoogle Scholar