Skip to main content
Articles

Covariation of Phasic Cardiovascular and Cortical Responses

Published Online:https://doi.org/10.1027//0269-8803.13.2.97

Abstract Effects of maintaining an alert state on event-related brain potentials (ERPs) and evoked cardiovascular responses were examined in an auditory detection task. Subjects were instructed to detect a possible difference in frequency between two successively presented tones in 5 s periods. Two types of trials were compared. In the first no tones were presented and subjects had to maintain an alert state for the full five seconds (uninterrupted trials). In the second type the alert state was interrupted by the presentation of visual stimuli which were presented in the second half of the 5 s period (interrupted trials). Both types of trial elicited ERPs with a negative shift consisting of a frontal and a parietal part. Uninterrupted trials elicited a stronger and longer lasting negative shift. This difference was maximal at parietal sites. The stronger negative shift was accompanied by a stronger deceleration in the heart rate response, which started at about the same time as the cortical effect but lasted somewhat longer. Furthermore, uninterrupted trials evoked a stronger decrease in the blood pressure response. This effect showed the expected delay when compared to the effect on heart rate (HR). The cardiovascular data confirmed the hypotheses concerning effects of maintaining an alert state, but the cortical data partly contradicted them. Altogether, the current findings do not contradict an active network involved in alertness, but they do not confirm the expected stronger involvement of the right hemisphere and involvement of prefrontal areas in this function.

References

  • Aston-Jones, G. , Rajkowski, J. , Kubiak, P. , Valentino, R.J. , Shipley, M.T. (1996). Role of the locus coeruleus in emotional activation. In G. Holstege, R. Bandler, & C.B. Saper (Eds.) The emotional motor system Progress in brain research, 107, 379– 402 . First citation in articleGoogle Scholar

  • Birbaumer, N. , Elbert, T. , Canavan, A. , Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1– 41 . First citation in articleCrossrefGoogle Scholar

  • Damen, E.J.P. , Brunia, C.H.M. (1987). Changes in heart rate and slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiology, 24, 700– 713 . First citation in articleCrossrefGoogle Scholar

  • Damen, E.J.P. , Brunia, C.H.M. (1994). Is a stimulus conveying task-relevant information a sufficient condition to elicit a stimulus-preceding negativity?. Psychophysiology, 31, 129– 139 . First citation in articleCrossrefGoogle Scholar

  • Jones, B.E. , Yang, T.Z. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. Journal of Comparative Neurology, 242, 56– 92 . First citation in articleCrossrefGoogle Scholar

  • Karemaker, J.M. (1985). Short-term regulation of blood pressure and the baroreceptor reflex. In J.F. Orlebeke, G. Mulder, & L.J.P. van Doornen (Eds.), The psychophysiology of cardiovascular control (pp. 55-68). New York: Plenum Press . First citation in articleGoogle Scholar

  • Koers, G. (1997). Brain control of heart regulation . PhD Thesis, University of Groningen, The Netherlands . First citation in articleGoogle Scholar

  • Koers, G. , Gaillard, A.W.K. , Mulder, G. (1997). Evoked heart rate and blood pressure in an S1-S2 paradigm. Biological Psychology, 46, 247– 274 . First citation in articleCrossrefGoogle Scholar

  • Ledoux, J. (1996). The emotional brain . New York: Simon & Schuster . First citation in articleGoogle Scholar

  • Loewy, A. D. , Spyer, K.M. (1990). Vagal preganglionic neurons. In A.D. Loewy & K.M. Spyer (Eds.), Central regulation of autonomic functions (pp. 68-87). Oxford: Oxford University Press . First citation in articleGoogle Scholar

  • McCarthy, G. , Wood, C.C. (1985). Scalp distributions of event-related potentials: An ambiguity associated with analysis of variance models. Electroencephalography and Clinical Neurophysiology, 62, 203– 208 . First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. (1970). The diminishing time-uncertainty with the lapse of time after the warning signal in reaction-time experiments with varying fore-periods. Acta Psychologica, 34, 399– 419 . First citation in articleCrossrefGoogle Scholar

  • O'Brien, R.G. , Kaiser, M.K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. Psychological Bulletin, 97, 316– 333 . First citation in articleGoogle Scholar

  • Obrist, P.A. , Wood, D.M. , Perez-Reyes, M. (1965). Heart rate during conditioning in humans: Effects of UCS intensity, vagal blockade, and adrenergic block of vasomotor activity. Journal of Experimental Psychology, 70, 32– 42 . First citation in articleCrossrefGoogle Scholar

  • Otten, L.J. , Gaillard, A.W.K. , Wientjes, C.J.E. (1995). The relation between event-related brain potential, heart rate, and blood pressure responses in an S1-S2 paradigm. Biological Psychology, 39, 81– 102 . First citation in articleCrossrefGoogle Scholar

  • Pardo, J.V. , Fox, P.T. , Raichle, M.E. (1991). Localization of a human attention system for sustained attention by positron emission tomography. Nature, 349, 61– 64 . First citation in articleCrossrefGoogle Scholar

  • Posner, M.I. (1995). Attention in cognitive neuroscience: An overview. In M.S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 615-624). Cambridge: MIT Press . First citation in articleGoogle Scholar

  • Posner, M.I. , Peterson, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25– 42 . First citation in articleCrossrefGoogle Scholar

  • Posner, M.I. , Raichle, M.E. (1994). Images of mind . New York: Scientific American Library . First citation in articleGoogle Scholar

  • Quigley, K.S. , Berntson, G.G. (1990). Autonomic origins of cardiac responses to nonsignal stimuli in the rat. Behavioral Neuroscience, 104, 751– 762 . First citation in articleCrossrefGoogle Scholar

  • Sanders, A.F. (1966). Expectancy: application and measurement. Acta Psychologica, 25, 293– 313 . First citation in articleCrossrefGoogle Scholar

  • Scherg, M. (1990). Fundamentals of dipole source analysis. In F. Grandori, M. Hoke, & G.L. Romani (Eds.), Auditory evoked magnetic fields and electric potentials: Advances in audiology, 6 (pp. 40-69). Basel: Karger . First citation in articleGoogle Scholar

  • Sharbrough, F. , Chatrian, G.E. , Lesser, R.P. , Lüders, H. , Nuwer, M. , Picton, T.W. (1991). AEEGS guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8, 200– 202 . First citation in articleCrossrefGoogle Scholar

  • Simons, R.F. (1988). Event-related slow brain potentials: a perspective from ANS psychophysiology. Advances in Psychophysiology, 3, 223– 267 . First citation in articleGoogle Scholar

  • Skinner, J.E. (1988). Brain involvement in cardiovascular disorders. In T. Elbert, W. Langosch, A. Steptoe, & D. Vaitl (Eds.), Behavioural medicine in cardiovascular disorders (pp. 229-253). New York: John Wiley & Sons Ltd . First citation in articleGoogle Scholar

  • Skinner, J.E. (1991). Brain control of cardiovascular dynamics. In C.H.M. Brunia, G. Mulder, & M.N. Verbaten (Eds.), Event-related brain research, EEG Suppl. 42 (pp. 270-283). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Skinner, J.E. , Beckman, K.J. , Gray, C.M. (1987). Detection of the cardiac patient at risk using the event- related slow potential. In R. Johnson, J.W. Rohrbaugh, & R. Parasuraman (Eds.), Current trends in event-related potential research. Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Somsen, R.J.M. , van der Molen, M.W. , Orlebeke, J.F. (1983). Phasic heart rate changes in reaction time, shock avoidance, and unavoidable shock tasks: are hypothetical generalizations about different S1-S2 tasks justified?. Psychophysiology, 20, 88– 94 . First citation in articleCrossrefGoogle Scholar

  • Sved, A. , Felsten, G. (1987). Stimulation of the locus coeruleus decreases arterial pressure. Brain Research, 414, 119– 132 . First citation in articleCrossrefGoogle Scholar

  • Van der Veen, F.M. (1997). Heart-brain communication . PhD Thesis, University of Groningen, The Netherlands . First citation in articleGoogle Scholar

  • Van der Veen, F.M. , Mulder, L.J.M. , Mulder, G. (1995). Interdependence of phasic cortical and cardiovascular responses: Effects of alertness and executive attention. Psychophysiology, 32, S80– S80 . First citation in articleGoogle Scholar

  • Van der Veen, F.M. , Mulder, L.J.M. , Hoekzema, A. , Mulder, G. (1996). Covariation of phasic cortical and cardiovascular responses in a detection task. Biological Psychology, 44, 105– 120 . First citation in articleCrossrefGoogle Scholar

  • Vasey, M.W. , Thayer, J.F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: A multivariate solution. Psychophysiology, 24, 479– 486 . First citation in articleCrossrefGoogle Scholar

  • Velden, M. , Wölk, C. (1990). Plotting systolic, diastolic, and pulse pressure on a real time scale. International Journal of Psychophysiology, 10, 99– 101 . First citation in articleCrossrefGoogle Scholar

  • Wesseling, K.H. , Settels, J.J. , de Wit, B. (1986). The measurement of continuous finger arterial pressure noninvasively in stationary subjects. In T.H. Schmidt, T.M. Dembrowski, & G. Blümchen (Eds.), Biological and psychological factors in cardiovascular disease (pp. 335-375). Berlin: Springer-Verlag . First citation in articleCrossrefGoogle Scholar

  • Wölk, C. , Velden, M. , Zimmermann, U. , Krug, S. (1989). The interrelation between phasic blood pressure and heart rate changes in the context of the “baroreceptor hypothesis.”. Journal of Psychophysiology, 3, 397– 402 . First citation in articleGoogle Scholar