Skip to main content
Articles

Heart Rate Response to Music

An Artificial Intelligence Study on Healthy and Traumatic Brain-Injured Subjects

Published Online:https://doi.org/10.1027/0269-8803.22.4.166

Background and rationale: Investigation of the brain’s emotional response to music is limited by methodological problems mainly related to the characterization of the emotions and concomitant brain conditions. In this study, artificial intelligence procedures were applied to identify significant music-induced changes in heart rate variability and to classify autonomic reactions to stimuli requiring complex brain operations. Both healthy subjects and traumatic brain-injury (TBI) patients were studied in order to test the method’s validity. Methods: 16 TBI patents and 26 healthy subjects were requested to listen to selected music samples while the heart beat was continuously recorded. The parametric and nonparametric frequency spectra were computed on the heart rate and the spectra descriptors were entered into a 1-R rules (very simple classification rules) data-mining procedure. Data-mining procedures independently classified the heart-rate spectral patterns and the emotions reported by subjects as positive, indifferent, or negative.Results and conclusions: The data-mining procedures sorted the nu_LF descriptor as the spectral parameter that allowed clustering the emotions reported by the subjects as positive and negative. Classification by nu_LF was comparable to that by self-reported emotions, with an overall correct classification by author in 76.0% of controls and 70% of patients. The identification of negative and positive emotions was correct in 81.3% and 68.9% of controls and in 65% and 74% of TBI patients, without significant differences between healthy subjects and TBI patients. This observation suggests that autonomic concomitants of emotions are detectable in response to complex emotional stimuli.

References

  • Allerdings, M.D. , Alfano, D.P. (2006). Neuropsychological correlates of impaired emotion recognition following traumatic brain injury. Brain and Cognition, 60, 193–194. First citation in articleCrossrefGoogle Scholar

  • Aoki, K. , Stephens, D.P. , Johnson, J.M. (2001). Diurnal variation in cutaneous vasodilatator and vasoconstrictor system during heat stress. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 281, R591–R595. First citation in articleGoogle Scholar

  • Appelhans, B.M. , Luecken, L.J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240. First citation in articleCrossrefGoogle Scholar

  • Appelhans, B.M. , Luecken, L.J. (2007). Heart rate variability and pain: Associations of two interrelated homeostatic processes. Biological Psychology, 12 [Epub ahead of print].. First citation in articleGoogle Scholar

  • Aysin, B. , Aysin, E. (2006). Effect of respiration in heart rate variability (HRV) analysis. IEEE Engineering in Medicine Biology Society, 1, 1776–1779. First citation in articleGoogle Scholar

  • Aysin, B. , Colombo, J. , Aysin, E. (2007). Comparison of HRV analysis methods during orthostatic challenge: HRV with respiration or without? IEEE Engineering in Medicine Biology Society, 22, 5047–5050. First citation in articleGoogle Scholar

  • Barbieri, R. , Triedman, J.K. , Saul, J.P. (2002). Heart rate control and mechanical cardiopulmonary coupling to assess central volume: A system analysis. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 283, R1210–R1220. First citation in articleCrossrefGoogle Scholar

  • Beda, A. , Jandre, F.C. , Phillips, D.I. , Giannella-Neto, A. , Simpson, D.M. (2007). Heart-rate and blood-pressure variability during psychophysiological tasks involving speech: Influence of respiration. Psychophysiology, 44, 767–778. First citation in articleCrossrefGoogle Scholar

  • Braga, A.N. , da Silva Lemos, M. , da Silva, J.R. , Fontes, W.R. , dos Santos, R.A. (2002). Effect of angiotensins on day-night fluctuations and stress-induced changes in blood pressure. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 282, R1663–R1671. First citation in articleGoogle Scholar

  • Briswas, A.K. , Scott, W.A. , Sommerauer, J.F. , Luckett, P.M. (2000). Heart rate variability after acute traumatic injury in children. Critical Care Medicine, 28, 3907–3912. First citation in articleCrossrefGoogle Scholar

  • Brown, A.W. , Malec, J.F. , McClelland, R.L. , Diehl, N.N. , Englander, J. , Cifu, D.X. (2005). Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis. Journal of Neurotrauma, 22, 1040–1051. First citation in articleCrossrefGoogle Scholar

  • Brown, S. , Martinez, M. , Parson, L. (2005). Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport, 15, 2033–2037. First citation in articleGoogle Scholar

  • Chambers, A.S. , Allen, J.J.B. (2002). Vagal tone as an indicator of treatment response in major depression. Psychophysiology, 39, 861–864. First citation in articleCrossrefGoogle Scholar

  • Cohen, H. , Benjamin, J. (2006). Power spectrum analysis and cardiovascular morbidity in anxiety disorders. Autonomic Neuroscience, 128(1–2), 1–8. First citation in articleCrossrefGoogle Scholar

  • Cohen, H. , Benjamin, J. , Geva, A.B. , Matar, M.A. , Kaplan, Z. , Kotler, M. (2000). Autonomic dysregulation in panic disorder and in posttraumatic stress disorder: Application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Research, 96(1), 1–13. First citation in articleCrossrefGoogle Scholar

  • Cohen, H. , Kotler, M. , Matar, M.A. , Kaplan, Z. , Loewenthal, U. , Miodownik, H. et al. (1998). Analysis of heart rate variability in posttraumatic stress disorder patients in response to a trauma-related reminder. Biological Psychiatry, 44, 1054–1059. First citation in articleCrossrefGoogle Scholar

  • Coleman, M.R. , Rodd, J.M. , Davis, M.H. , Johnsrude, I.S. , Menon, D.K. , Pickard, J.D. et al. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain, 130, 2494–507. Epub 2007 Sep 7. Comment in: Brain, 2007t, 130, 2482–2483. First citation in articleCrossrefGoogle Scholar

  • Critchley, R. , Hanson, R.H. (Eds.). (1977). Music and brain. London: Heinemann Medical. First citation in articleGoogle Scholar

  • Critchley, H.D. , Rotshtein, P. , Nagayi, Y. , O’Doherty, J. , Mathias, C.J. , Dolan, R. (2005). Activity in the human brain predicting heart rate response to emotional facial expression. NeuroImage, 24, 751–762. First citation in articleCrossrefGoogle Scholar

  • Dolce, G. , Quintieri, M. , Serra, S. , Lagani, V. , Pignolo, L. (2008). Clinical signs and early prognosis in vegetative state: A decisional tree, data-mining study. Brain Injury, 22, 617–623. First citation in articleCrossrefGoogle Scholar

  • Draper, K. , Ponsford, J. , Schönberger, M. (2007). Psychosocial and emotional outcomes 10 years following traumatic brain injury. Journal of Head Trauma Rehabilitation, 22, 278–287. First citation in articleCrossrefGoogle Scholar

  • Eibe, F. (2004). Machine learning with WEKA. Department of Computer Science, University of Waikato, New Zealand. Retrieved 2006 from puzzle.dl.sourceforge.net/sourceforge/weka/weka.ppt. First citation in articleGoogle Scholar

  • Fitch, T.W. (2005). The evolution of music in comparative perspective. Annals of the New York Academy of Science, 1060, 29–49. First citation in articleCrossrefGoogle Scholar

  • Fraizer, T.W. , Strauss, M.E. , Steinhauer, S. (2004). Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology, 41, 75–83. First citation in articleCrossrefGoogle Scholar

  • Gehi, A. , Mangano, D. , Pipkin, S. , Browner, W.S. , Whooley, M.A. (2005). Depression and heart rate variability in patients with stable coronary heart disease: Findings from the heart and soul study. Archives of General Psychiatry, 62, 661–666. First citation in articleCrossrefGoogle Scholar

  • Hagen, C. , Malkmus, D. , Durham, D. (1972). Levels of cognitive function. Downey, CA: Ranchos Los Amigos Hospitals. First citation in articleGoogle Scholar

  • Han, J. , Kamber, M. (2006). Data mining: Concepts and techniques. (Department of Computer Science, University of Illinois at Urbana-Champaign, Ed.). San Francisco: Morgan Kaufmann. First citation in articleGoogle Scholar

  • Hansson-Sandsten, M. , Jönsson, P. (2007). Multiple window correlation analysis of HRV power and respiratory frequency. IEEE Transaction on Biomedical Engineering, 54, 1770–1779. First citation in articleCrossrefGoogle Scholar

  • Hildebrandt, H. , Happe, S. , Deutschmann, A. , Basar-Eroglu, C. , Eling, P. , Brunhöber, J. (2007). Brain perfusion and VEP reactivity in occipital and parietal areas are associated to recovery from hypoxic vegetative state. Journal of the Neurological Science, 260, 150–158. Epub 2007 May 30. First citation in articleCrossrefGoogle Scholar

  • Holte, R.C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–90. First citation in articleCrossrefGoogle Scholar

  • Hukkelhoven, C.W. , Steyerberg, E.W. , Habbema, J.D. , Farace, E. , Marmarou, A. , Murray, G.D. et al. (2005). Predicting outcome after traumatic brain injury: Development and validation of a prognostic score based on admission characteristics. Journal of Neurotrauma, 22, 1025–1039. First citation in articleCrossrefGoogle Scholar

  • Imberty, M. (1976). Signification and meaning in music. Montréal: Groupe de Rechereches en Sémiologie Musicale, Université de Montréal, Canada. First citation in articleGoogle Scholar

  • Imberty, M. (1979). Entendre la musique: Sémantique psychologique de la musique, tome 1 [Hearing music: The psychological semantics of music, vol. 1]. Paris: Dunod. First citation in articleGoogle Scholar

  • Imberty, M. (1981). Les écritures du temps: Sémantique psychologique de la musique, tome 2 [The writing of time: The psychological semantics of music, vol. 2]. Paris: Dunod. First citation in articleGoogle Scholar

  • Imberty, M. (1997). Epistemic subject, historical subject, psychological subject: Regarding Lerdhal and Jackendoff’s generative theory of music. In I. Deliege, J.A. Sloboda (Eds.), Perception and cognition of music (pp. 429–432). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Janata, P. , Birk, J.L. , Van Horn, D.J. , Leman, M. , Tilmann, B. , Bharucha, G. (2002). The cortical topography of tonal structures underlying western music. Science, 298, 2167–2170. First citation in articleCrossrefGoogle Scholar

  • Jentschke, S. , Koelsh, S. , Friederici, A.D. (2005). Investigating the relationship of music and language in children. Annals of the New York Academy of Science, 1060, 231–242. First citation in articleCrossrefGoogle Scholar

  • John, E.R. , Lowe, R.S. , Halper, J. , Merkin, H. , Howard, B. , Bernad, P. et al. (in press). Evidence of cognitive awareness in a vegetative state (VS) patient (case report). Lancet. First citation in articleGoogle Scholar

  • Keren, O. , Yapatov, S. , Radai, M.M. , Elad-Yarum, R. , Faraggi, D. , Abboud, S. et al. (2005). Heart rate variability of patients with traumatic brain injury during postinsult subacute period. Brain Injury, 19, 605–611. First citation in articleCrossrefGoogle Scholar

  • King, M.L. , Litchtman, S.W. , Seliger, G. , Ehert, F.A. , Steinberg, J.S. (1997). Heart rate variability in chronic traumatic brain injury. Brain Injury, 11, 445–453. First citation in articleCrossrefGoogle Scholar

  • Koelsch, S. , Fritz, T. , v. Cramon, D.Y. , Muller, K. , Friederici, A.D. (2005). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239–250. First citation in articleCrossrefGoogle Scholar

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceeding of the Fourteenth International Joint Conference on Artificial Intelligence, 2, 1137–1143. First citation in articleGoogle Scholar

  • Kotani, K. , Takamasu, K. , Tachibana, M. (2007). Respiratory-phase domain analysis of heart rate variability can accurately estimate cardiac vagal activity during a mental arithmetic task. Methods of Information in Medicine, 46, 376–85. First citation in articleCrossrefGoogle Scholar

  • Lafranchi, P.A. , Somer, V.K. (2003). Arterial baroflex function and cardiovascular variability: Interactions and implications. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 283, R815–R826. First citation in articleCrossrefGoogle Scholar

  • Laureys, S. , Perrin, F. , Brédart, S. (2007). Self-consciousness in noncommunicative patients. Consciousness and Cognition, 16, 722–745. First citation in articleCrossrefGoogle Scholar

  • Laureys, S. , Perrin, F. , Faymonville, M.E. , Schnakers, C. , Boly, M. , Bartsch, V. et al. (2004). Cerebral processing in the minimally conscious state. Neurology, 63, 916–918. First citation in articleCrossrefGoogle Scholar

  • Le Doux, J. (Ed.). (1996). The emotional brain. New York: Simon & Schuster. First citation in articleGoogle Scholar

  • Lehrer, P.M. , Vaschillo, E. , Vaschillo, B. , Lu, S. , Eckberg, D.L. , Edelberg, R. et al. (2003). Heart rate variability biofeedback increase baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65, 796–805. First citation in articleCrossrefGoogle Scholar

  • Lippert-Grüner, M. , Kuchta, J. , Hellmich, M. , Klug, N. (2006). Neurobehavioral deficits after severe traumatic brain injury (TBI). Brain Injury, 20, 569–574. First citation in articleCrossrefGoogle Scholar

  • Luecken, L.J. , Rodriguez, A.P. , Appelhans, B.M. (2005). Cardiovascular stress responses in young adulthood associated with family-of-origin relationship experiences. Psychosomatic Medicine, 67, 514–21. First citation in articleCrossrefGoogle Scholar

  • Malpas, S.C. (2002). Neural influences on cardiovascular variability: Possibilities and pitfalls. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 282, H6–H20. First citation in articleGoogle Scholar

  • Mandal, K.M. , Pandey, R. , Prasad, A.B. (1998). Facial expression of emotion and schizophrenia: A review. Schizophrenia Bulletin, 24(1), 399–412. First citation in articleCrossrefGoogle Scholar

  • Mashin, V.A. , Mashina, M.N. (2000). Analysis of the HRV in negative functional states in the course of the psychological relaxation session. Human Physiology, 26, 420–425. First citation in articleCrossrefGoogle Scholar

  • Morita, I. , Keith, M.W. , Kanno, T. (2007). Dorsal column stimulation for persistent vegetative state. Acta Neurochirurgica Supplement, 97, 455–459. First citation in articleCrossrefGoogle Scholar

  • Neuhaus, C. , Knösche, T.R. (2008). Processing of pitch and time sequences in music. Neuroscience Letters, 15(1), 11–15. First citation in articleCrossrefGoogle Scholar

  • Nikki, S.R. (2004). Intense emotional response to music: A test of the physiological arousal hypothesis. Psychology of Music, 32, 371–388. First citation in articleGoogle Scholar

  • Niskanen, P.J. , Tarvainen, M.P. , Ranta-aho, P.O. , Karjalainen, P.A. (2004). Software for advanced HRV analysis. University of Kuopio Department of Applied Physics. Computer Methods and Programs Biomedicine, 76(1), 73–81. First citation in articleCrossrefGoogle Scholar

  • Owen, A.M. , Coleman, M.R. , Boly, M. , Davis, M.H. , Laureys, S. , Pickard, J.D. (2007). Using functional magnetic resonance imaging to detect covert awareness in the vegetative state. Archives of Neurology, 64, 1098–1102. First citation in articleCrossrefGoogle Scholar

  • Pang, B.C. , Kuralmani, V. , Joshi, R. , Hongli, Y. , Lee, K.K. , Ang, B.T. et al. (2007). Hybrid outcome prediction model for severe traumatic brain injury. Journal of Neurotrauma, 24, 136–46. First citation in articleCrossrefGoogle Scholar

  • Parker, R.S. (1996). he spectrum of emotional distress and personality changes after minor head injury incurred in a motor vehicle accident. Brain Injury, 10, 287–302. First citation in articleCrossrefGoogle Scholar

  • Parncutt, R. (2006). Prenatal development. In G.E. McPherson (Ed.), The child as musician (pp. 1–31). Oxford: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Peretz, I. , Gagnon, L. , Bouchard, B. (1998). Music and emotion: Perceptual determinants, immediacy, and isolation after brain damage. Cognition, 68, 111–141. First citation in articleCrossrefGoogle Scholar

  • Perrin, F. , Schnakers, C. (2006). Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Archives of Neurology, 63, 562–569. First citation in articleCrossrefGoogle Scholar

  • Plutchik, R. (1994). The psychology and biology of emotion. New York: Harper Collins. First citation in articleGoogle Scholar

  • Qiu, J. (2007). Probing islands of consciousness in the damaged brain. Lancet Neurology, 6, 946–947. First citation in articleCrossrefGoogle Scholar

  • Reitero, N. , Cividjian, A. , Trevaks, D. , Pequignot, J.M. , Quintin, L. , McAllen, R.M. (2002). Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguous. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 283, R1327–R1334. First citation in articleCrossrefGoogle Scholar

  • Rovlias, A. , Kotsou, S. (2004). Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables. Journal of Neurotrauma, 21, 886–893. First citation in articleCrossrefGoogle Scholar

  • Ruiz, M.H. , Koelsch, S. , Bhattacharya, J. (2008). Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music. Human Brain Mapping, 20. [Epub ahead of print]. First citation in articleGoogle Scholar

  • Sannita, W.G. (2006). Individual variability, end-point effects, and possible biases in electrophysiological research. Clinical Neurophysiology, 117, 2569–2583. First citation in articleCrossrefGoogle Scholar

  • Scholten, M.R. , van Honk, J. , Aleman, A. , Kahn, R.S (2006). Behavioral inhibition system (BIS), behavioral activation system (BAS), and schizophrenia: Relationship with psychopathology and physiology. Journal of Psychiatric Research, 40, 638–645. First citation in articleCrossrefGoogle Scholar

  • Suda, M. , Morimoto, K. , Obata, A. , Koizumi, H. , Maki, A. (2008). Cortical responses to Mozart’s sonata enhance spatial-reasoning ability. Neurological Research, 15. [Epub ahead of print]. First citation in articleGoogle Scholar

  • Tarasti, E. (1994). A theory of musical semiotics. Bloomington, IN: Indiana University Press. First citation in articleGoogle Scholar

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology of Circulation. (1996). Heart rate variability: Standard of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Thaut, M.H. , Demartin, M. , Sanes, J.N. (2008). Brain networks for integrative rhythm formation. PLoS ONE, 3(5), e2312. First citation in articleGoogle Scholar

  • Trainor, L. (2008). Science & music: The neural roots of music. Nature, 453, 598–599. First citation in articleCrossrefGoogle Scholar

  • Urakawa, K. , Yokoyama, K. (2005). Music can enhance exercise-induced sympathetic dominancy assessed by HRV. Tohoku Journal of Experimental Medicine, 205, 213–218. First citation in articleCrossrefGoogle Scholar

  • Valkonen-Korhonen, M. , Tarvainen, M.P. , Ranta-Aho, P. , Karjalainen, P.A. , Partanen, J. , Karhu, J. et al. (2003). Heart rate variability in acute psychosis. Psychophysiology, 40, 716–26. First citation in articleCrossrefGoogle Scholar

  • van Bemmel, J.H. , Munsen, M.A. (1997). Handbook of medical informatics. Berlin: Springer-Verlag. First citation in articleGoogle Scholar

  • Wijnen, V.J. , Heutink, M. , van Boxtel, G.J. , Eilander, H.J. , de Gelder, B. (2006). Autonomic reactivity to sensory stimulation is related to consciousness level after severe traumatic brain injury. Clinical Neurophysiology, 117, 1794–1780. First citation in articleCrossrefGoogle Scholar

  • Witten, I.H. , Eibe, F. (2005). Data mining – Practical machine learning tools and techniques with Java implementations. San Francisco, CA: Morgan Kaufman. First citation in articleGoogle Scholar

  • Yap, L. (2008). How does the brain process music? Clinical Medicine, 8, 229–230. First citation in articleCrossrefGoogle Scholar

  • Yien, H.W. , Hseu, S.S. , Lee, L.C. , Kuo, T.B. , Lee, T.Y. , Chan, S.H. (1997). Spectral analysis of systemic arterial pressure and heart rate variability as a prognostic tool for the prediction of patient outcome in intensive care unit. Critical Care Medicine, 25, 258–266. First citation in articleCrossrefGoogle Scholar