Skip to main content
Article

Fish Consumption and Heart Rate Variability

Preliminary Results

Published Online:https://doi.org/10.1027/0269-8803/a000005

The present study investigates the impact of seafood intake on biological markers in blood such as the marine very long-chain polyunsaturated omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 25-hydroxyvitamin D (25(OH)D), in addition to heart rate variability (HRV), which is an important biological marker of good health, both physical and mental. A total of 53 male inmates from a Norwegian prison were randomly assigned to intervention and control groups, although attrition reduced some comparisons at the end of the study to 13 (intervention group (n = 6) and control group (n = 7). The intervention group received seafood (mainly fatty fish, > 8% fat) for dinner three times per week for a period of 6 months. Both groups were requested to eat their usual diet provided by the prison. Blood samples were collected and HRV (high frequency (HF) and low frequency (LF) power) was measured before and after the study period. Overall, the intervention group showed significant increase in levels of 25(OH)D and HF-power, and a significant reduction in the sympathovagal balance (LF/HF). The present findings may have important implications with regard to health improvement.

References

  • Alexander, J. , Frøyland, L. , Hemre, G. I. , Jacobsen, B. K. , Lund, E. , Meltzer, H. M. et al. (2007). A comprehensive assessment of fish and other seafood in the Norwegian diet. Report from Norwegian Scientific Committee for Food Safety. Retrieved from www.vkm.no/eway/default.aspx?pid=0&oid=-2&trg=__new&__new=-2:17473 First citation in articleGoogle Scholar

  • Appelhans, B. M. , Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240. First citation in articleCrossrefGoogle Scholar

  • Araujo, P. , Nguyen, T. T. , Frøyland, L. , Wang, J. , Kang, J. X. (2008). Evaluation of a rapid method for the quantitative analysis of fatty acids in various matrices. Journal of Chromatography A, 1212, 106–113. First citation in articleCrossrefGoogle Scholar

  • Åsberg, M. (1994). Monoamine neurotransmitters in human aggressiveness and violence: A selective review. Criminal Behavior and Mental Health, 4, 303–327. First citation in articleGoogle Scholar

  • Bär, K.-L. , Greiner, W. , Jochum, T. , Friedrich, M. , Wagner, G. , Sauer, H. (2004). The influence of major depression and its treatment on heart rate variability and pupillary light reflex parameters. Journal of Affective Disorders, 82, 245–252. First citation in articleCrossrefGoogle Scholar

  • Booij, L. , Swenne, C. A. , Brosschot, J. F. , Haffmans, P. M. J. , Thayer, J. F. , Van der Does, A. J. W. (2006). Tryptophan depletion affects heart rate variability and impulsivity in remitted depressed patients with a history of suicidal ideation. Biological Psychiatry, 60, 507–514. First citation in articleCrossrefGoogle Scholar

  • Christensen, J. H. , Christensen, M. S. , Dyeberg, J. , Schmidt, E. B. (1999). Heart rate variability and fatty acid content of blood cell membranes: A dose-response study with n-3 fatty acids. American Journal of Nutrition, 70, 331–337. First citation in articleGoogle Scholar

  • Christensen, J. H. , Skou, H. A. , Fog, L. , Hansen, V. E. , Vesterlund, T. , Dyerberg, J. , ... Schmidt, E. B. (2001). Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angiography. Circulation, 651–657. First citation in articleGoogle Scholar

  • Christensen, J. H. , Skou, H. A. , Madsen, T. , Tørring, I. , Smidt, E. B. (2001). Heart rate variability and n-3 polyunsaturated fatty acids in patients with diabetes mellitus. Journal of Internal Medicine, 249, 545–552. First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. First citation in articleCrossrefGoogle Scholar

  • Eckberg, D. L. (1997). Sympathovagal balance. Circulation, 96, 3224–3232. First citation in articleCrossrefGoogle Scholar

  • Elvevoll, E. O. , Barstad, H. , Breimo, E. S. , Brox, J. , Eilertsen, K. E. , Lund, T. , ..., Osterud, B. (2003). Enhanced incorporation of n-3 fatty acids from fish compared with fish oils. Lipids, 41, 1109–1114. First citation in articleCrossrefGoogle Scholar

  • Friedman, B. H. , Thayer, J. F. , Borcovec, T. D. (1993). Heart rate variability in anxiety disorder. Psychophysiology, 30, 28. First citation in articleCrossrefGoogle Scholar

  • Geelen, A. , Zock, P. L. , Swenne C. A., Brouwer I. A. , Schouten, E. G. , Katan, M. B. (2003). Effect of n-3 fatty acids on heart rate variability and baroreflex sensitivity in middle-aged subjects. American Heart Journal, 146, 344. First citation in articleCrossrefGoogle Scholar

  • Gesch, C. B. , Hammond, S. M. , Hampson, S. E. , Eves, A. , Crowder, M. J. (2002). Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behavior of young adult prisoners. British Journal of Psychiatry, 181, 22–28. First citation in articleCrossrefGoogle Scholar

  • Giovannucci, E. , Liu, Y. , Hollis, B. W. , Rimm, E. B. (2008). 25-hydroxyvitamin D and risk of myocardial infarction in men. Archives of Internal Medicine, 168, 1174–1180. First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L. , Johnsen, B. H. , Sollers, J. J. , Stenvik, K. , Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. European Journal Applied Physiology, 93, 263–272. First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L. , Johnsen, B. H. , Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48, 263–274. First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L. , Johnsen, B. H. , Thornton, D. , Waage, L. , Thayer, J. F. (2007). Facets of psychopathy and heart rate variability and cognitive functions. Journal of Personality Disorders, 21, 568–582. First citation in articleCrossrefGoogle Scholar

  • Hibbeln, J. R. , Ferguson, T. A. , Blasbalg, T. L. (2006). Omega-3 fatty acid deficiencies in neurodevelopment, aggression, and autonomic dysregulation: Opportunities for intervention. International Review of Psychiatry, 18, 107–118. First citation in articleCrossrefGoogle Scholar

  • Kellett, D. O. , Ramage, A. G. , Jordan, D. (2005). Central 5-HT7 receptors are critical for reflex activation of cardiac vagal drive in anaesthetized rats. Journal of Physiology, 563, 319–331. First citation in articleCrossrefGoogle Scholar

  • Klaver, C. H.A. M. , de Geus, E. J. C. , de Vries, J. (1994). Ambulatory monitoring system. In F. J. Maarse (Ed.), Computers in psychology 5, applications, methods and instrumentation (pp. 254–268). Lisse, The Netherlands: Swets & Zeitlinger. First citation in articleGoogle Scholar

  • Malik, M. , Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology . (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Malliani, A. , Pagani, M. , Lombardi, F. , Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circualtion, 84, 48–492. First citation in articleCrossrefGoogle Scholar

  • McCann, J. C. , Ames, B. N. (2008). Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction. The FASEB Journal, 22, 982–1001. First citation in articleCrossrefGoogle Scholar

  • Moak, J. P. , Goldstein, D. S. , Eldadah, B. A. , Saleem, A. , Holmes, C. , Pechnik, S. , Sharabi, Y. (2007). Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm, 4, 1523–1529. First citation in articleCrossrefGoogle Scholar

  • Pomeranz, B. , Macaulay, R. J. B. , Caudill, M. A. , Kutz, I. , Adam, D. , Gordon, D. , ... Benson, H. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 17, H151–153. First citation in articleGoogle Scholar

  • Przybelski, R. J. , Binkley, N. C. (2007). Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Archives of Biochemistry and Biophysics, 460, 202–205. First citation in articleCrossrefGoogle Scholar

  • Pumprla, J. , Howorka, K. , Groves, D. , Chester, M. , Nolan, J. (2002). Functional assessment of heart rate variability: Physiological basis and practical applications. International Journal of Cardiology, 84, 1–14. First citation in articleCrossrefGoogle Scholar

  • Ross, B. M. , Seguin, J. , Sieswerda, L. E. (2007). Omega-3 fatty acids as treatments for mental illness: Which disorder and which fatty acid? Lipids in Health and Disease, 6, 1–19. First citation in articleCrossrefGoogle Scholar

  • Stumpf, W. E. , Privette, T. H. (1989). Light, vitamin D and psychiatry: Role of 1,25-dihydroxyvitamin D3 (soltriol) in etiology and therapy of seasonal affective disorder and other mental processes. Psychopharmacology, 97, 285–294. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. , Hansen, A. L. , Saus-Rose, E. , Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. , Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61, 201–216. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. , Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74, 224–242. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. , Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of Neurovisceral Integration. Neuroscience and Biobehavioral Reviews, 33, 81–88. First citation in articleCrossrefGoogle Scholar

  • Torkildsen, Ø. , Brunborg, L. A. , Thorsen, F. , Mørk, S. J. , Stangel, M. , Myhr, K. M. , Bø, L. (2009). Effects of dietary intervention on MRI activity, de-and remyelination in the cuprizone modell of demyelination. Experimental Neurology, 215, 160–166. First citation in articleCrossrefGoogle Scholar

  • Wilkins, C. H. , Sheline, Y. I. , Roe, C. M. , Birge, S. J. , Morris, J. C. (2006). Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. American Journal of Geriatric Psychiatry, 14, 1032–1040. First citation in articleCrossrefGoogle Scholar

  • Zitterman, A. (2003). Vitamin D in preventive medicine: Are we ignoring the evidence? The British Journal of Nutrition, 89, 552–572. First citation in articleCrossrefGoogle Scholar