Skip to main content
Article

Inefficient Encoding as an Explanation for Age-Related Deficits in Recollection-Based Processing

Published Online:https://doi.org/10.1027/0269-8803/a000122

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013; Nessler, Friedman, Johnson, & Bersick, 2007; Nessler, Johnson, Bersick, & Friedman, 2006). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.

References

  • Ally, B. A. , Waring, J. D. , Beth, E. H. , McKeever, J. D. , Milberg, W. P. , Budson, A. E. (2008). Aging memory for pictures: Using high-density event-related potentials to understand the effect of aging on the picture superiority effect. Neuropsychologia, 46, 679–689. doi: S0028-3932(07)00331-4 [pii]10.1016/j.neuropsychologia.2007.09.011 First citation in articleCrossrefGoogle Scholar

  • Badre, D. , Wagner, A. D. (2002). Semantic retrieval, mnemonic control, and prefrontal cortex. Behavioral and Cognitive Neuroscience Reviews, 1, 206–218. First citation in articleCrossrefGoogle Scholar

  • Buckner, R. L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195–208. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R. (2001). Cognitive neuroscience of aging: Contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42, 277–286. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85–100. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R. , Anderson, N. D. , Locantore, J. K. , McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17, 1394–1402. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J. , Kramer, A. F. , Erickson, K. I. , Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging, 20, 363–375. First citation in articleCrossrefGoogle Scholar

  • Craik, F. I. (2002). Levels of processing: Past, present, and future? Memory, 10, 305–318. First citation in articleCrossrefGoogle Scholar

  • Craik, F. I. (2008). Memory changes in normal and pathological aging. Canadian Journal of Psychiatry, 53, 343–345. First citation in articleCrossrefGoogle Scholar

  • Duarte, A. , Ranganath, C. , Trujillo, C. , Knight, R. T. (2006). Intact recollection memory in high-performing older adults: ERP and behavioral evidence. Journal of Cognitive Neuroscience, 18, 33–47. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Voss, M. W. , Prakash, R. S. , Basak, C. , Szabo, A. , Chaddock, L. , … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–3022. doi: 1015950108 [pii]10.1073/pnas.1015950108 First citation in articleGoogle Scholar

  • Fabiani, M. (2012). It was the best of times, it was the worst of times: A psychophysiologist’s view of cognitive aging. Psychophysiology, 49, 283–304. doi: 10.1111/j.1469-8986.2011.01331 First citation in articleCrossrefGoogle Scholar

  • Friedman, D. (2013). The cognitive aging of episodic memory: A view based on the event-related brain potential. Frontiers in Behavioral Neuroscience, 7, 111. doi: 10.3389/fnbeh.2013.00111 First citation in articleCrossrefGoogle Scholar

  • Friedman, D. , de Chastelaine, M. , Nessler, D. , Malcolm, B. (2010). Changes in familiarity and recollection across the lifespan: An ERP perspective. Brain Research, 1310, 124–141. doi: S0006-8993(09)02442-1 [pii]10.1016/j.brainres.2009.11.016 First citation in articleCrossrefGoogle Scholar

  • Friedman, D. , Johnson, R. Jr. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microscopy Research and Technique, 51, 6–28. First citation in articleCrossrefGoogle Scholar

  • Friedman, D. , Johnson, R. Jr. (2014). The effects of aging on recollection-related brain activity: Low levels of recollection engender high levels of compensatory brain activity. Manuscript in preparation. First citation in articleGoogle Scholar

  • Gallo, D. A. , Meadow, N. G. , Johnson, E. L. , Foster, K. T. (2008). Deep levels of processing elicit a distinctiveness heuristic: Evidence from the criterial recollection task. Journal of Memory and Language, 58, 1095–1111. First citation in articleCrossrefGoogle Scholar

  • Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13, 491–505. doi: 10.1038/nrn3256 First citation in articleCrossrefGoogle Scholar

  • Grady, C. L. , McIntosh, A. R. , Craik, F. I. (2005). Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia, 43, 1466–1481. First citation in articleCrossrefGoogle Scholar

  • Greenwood, P. M. , Parasuraman, R. (2010). Neuronal and cognitive plasticity: A neurocognitive framework for ameliorating cognitive aging. Frontiers in Aging Neuroscience, 2, 150. doi: 10.3389/fnagi.2010.00150 First citation in articleCrossrefGoogle Scholar

  • Gutchess, A. H. , Ieuji, Y. , Federmeier, K. D. (2007). Event-related potentials reveal age differences in the encoding and recognition of scenes. Journal of Cognitive Neuroscience, 19, 1089–1103. doi: 10.1162/jocn.2007.19.7.1089 First citation in articleCrossrefGoogle Scholar

  • Hashtroudi, S. , Parker, E. S. , Luis, J. D. , Reisen, C. A. (1989). Generation and elaboration in older adults. Experimental Aging Research, 15, 73–78. First citation in articleGoogle Scholar

  • Johnson, R. Jr. (1995). Event-related potential insights into the neurobiology of memory systems. In F. Boller, J. Grafman (Eds.), Handbook of Neuropsychology, Vol. 10, (pp. 135–163). Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • Johnson, R. Jr. , Nessler, D. , Friedman, D. (2013). Temporally specific divided attention tasks in young adults reveal the temporal dynamics of episodic encoding failures in elderly adults. Psychology and Aging, 28, 443–456. doi: 10.1037/a0030967 First citation in articleCrossrefGoogle Scholar

  • Johnson, R. Jr. , Simon, E. J. , Henkell, H. , Zhu, J. (2011). The role of episodic memory in controlled evaluative judgments about attitudes: An event-related potential study. Neuropsychologia, 49, 945–960. doi: S0028-3932(11)00033-9 [pii]10.1016/j.neuropsychologia.2011.01.028 First citation in articleCrossrefGoogle Scholar

  • Kramer, A. F. , Colcombe, S. J. , McAuley, E. , Eriksen, K. I. , Scalf, P. , Jerome, G. , … Webb, A. G. (2003). Enhancing brain and cognitive function of older adults through fitness training. Journal of Molecular Neuroscience, 20, 213–221. First citation in articleCrossrefGoogle Scholar

  • Langenecker, S. A. , Nielson, K. A. (2003). Frontal recruitment during response inhibition in older adults replicated with fMRI. NeuroImage, 20, 1384–1392. First citation in articleCrossrefGoogle Scholar

  • Li, J. , Morcom, A. M. , Rugg, M. D. (2004). The effects of age on the neural correlates of successful episodic retrieval: An ERP study. Cognitive, Affective & Behavioral Neuroscience, 4, 279–293. First citation in articleCrossrefGoogle Scholar

  • Light, L. L. (1991). Memory and aging: Four hypotheses in search of data. Annual Review of Psychology, 42, 333–376. First citation in articleCrossrefGoogle Scholar

  • Logan, J. M. , Sanders, A. L. , Snyder, A. Z. , Morris, J. C. , Buckner, R. L. (2002). Under-recruitment and non-selective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33, 827–840. First citation in articleCrossrefGoogle Scholar

  • Light, L. L. , Prull, M. W. , Voie, D. J. L. , Healy, M. R. (2000). Dual process theories of memory in old age. In E. Timothy, J. Perfect, E. Elizabeth, A. Maylor (Eds.), Models of cognitive aging (pp. 238–300). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Lustig, C. , Shah, P. , Seidler, R. , Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19, 504–522. doi: 10.1007/s11065-009-9119-9 First citation in articleCrossrefGoogle Scholar

  • Mecklinger, A. , Frings, C. , Rosburg, T. (2012). Response to Paller et al.: The role of familiarity in making inferences about unknown quantities. Trends in Cognitive Sciences, 16, 315–316. doi: 10.1016/j.tics.2012.04.009 First citation in articleCrossrefGoogle Scholar

  • Nee, D. E. , Jonides, J. (2009). Common and distinct neural correlates of perceptual and memorial selection. NeuroImage, 45, 963–975. First citation in articleCrossrefGoogle Scholar

  • Nessler, D. , Friedman, D. , Johnson, R. Jr. , Bersick, M. (2007). Does repetition engender the same retrieval processes in young and older adults? Neuroreport, 18, 1837–1840. doi: 10.1097/WNR.0b013e3282f16d9f00001756-200711190-00017 [pii] First citation in articleCrossrefGoogle Scholar

  • Nessler, D. , Johnson, R. Jr. , Bersick, M. , Friedman, D. (2006). On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity. NeuroImage, 30, 299–312. First citation in articleCrossrefGoogle Scholar

  • Nielson, K. A. , Langenecker, S. A. , Garavan, H. (2002). Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychology and Aging, 17, 56–71. First citation in articleCrossrefGoogle Scholar

  • Paller, K. A. , Lucas, H. D. , Voss, J. L. (2012). Assuming too much from “familiar” brain potentials. Trends in Cognitive Sciences, 16, 313–315. discussion 315–316. doi: 10.1016/j.tics.2012.04.010 First citation in articleCrossrefGoogle Scholar

  • Park, D. C. , Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi: 10.1146/annurev.psych.59.103006.093656 First citation in articleCrossrefGoogle Scholar

  • Park, D. C. , McDonough, I. M. (2013). The dynamic aging mind: Revelations from functional neuroimaging research. Perspectives on Psychological Science, 8, 62–67. First citation in articleCrossrefGoogle Scholar

  • Perrin, F. , Pernier, J. , Bertrand, O. , Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184–187. First citation in articleCrossrefGoogle Scholar

  • Prull, M. W. , Dawes, L. L. , Martin, A. M. 3rd , Rosenberg, H. F. , Light, L. L. (2006). Recollection and familiarity in recognition memory: Adult age differences and neuropsychological test correlates. Psychology and Aging, 21, 107–118. First citation in articleCrossrefGoogle Scholar

  • Raposo, A. , Han, S. , Dobbins, I. G. (2009). Ventrolateral prefrontal cortex and self-initiated semantic elaboration during memory retrieval. Neuropsychologia, 47, 2261–2271. doi: S0028-3932(08)00420-X [pii]10.1016/j.neuropsychologia.2008.10.024 First citation in articleCrossrefGoogle Scholar

  • Raz, N. (2009). Decline and compensation in aging brain and cognition: promises and constraints. Preface. Neuropsychol ogy Review, 19(4), 411–414. doi: 10.1007/s11065-009-9122-1 First citation in articleCrossrefGoogle Scholar

  • Reuter-Lorenz, P. A. (2013). Aging and cognitive neuroimaging: A fertile union. Perspectives on Psychological Science, 8, 68–71. First citation in articleCrossrefGoogle Scholar

  • Reuter-Lorenz, P. A. , Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182. First citation in articleGoogle Scholar

  • Reuter-Lorenz, P. A. , Park, D. C. (2010). Human neuroscience and the aging mind: a new look at old problems. The Journals of Gerontology, Series B, Psychological Sciences & Social Sciences, 65(4), 405–415. doi: gbq035 [pii] First citation in articleCrossrefGoogle Scholar

  • Rugg, M. D. , Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11, 251–257. First citation in articleCrossrefGoogle Scholar

  • Rugg, M. D. , Morcom, A. M. (2005). The relationship between brain activity, cognitive performance and aging: The case of memory. In R. Cabeza, L. Nyberg, D. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 132–154). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Schneider-Garces, N. J. , Gordon, B. A. , Brumback-Peltz, C. R. , Shin, E. , Lee, Y. , Sutton, B. P. , … Fabiani, M. (2010). Span, CRUNCH, and beyond: Working memory capacity and the aging brain. [Research Support, N.I.H., Extramural]. Journal of Cognitive Neuroscience, 22(4), 655–669. doi: 10.1162/jocn.2009.21230 First citation in articleCrossrefGoogle Scholar

  • Snodgrass, J. G. , Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50. First citation in articleCrossrefGoogle Scholar

  • Sowell, E. R. , Peterson, B. S. , Thompson, P. M. , Welcome, S. E. , Henkenius, A. L. , Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315. First citation in articleCrossrefGoogle Scholar

  • St. Jacques, P. L. , Levine, B. (2007). Ageing and autobiographical memory for emotional and neutral events. Memory, 15, 129–144. First citation in articleCrossrefGoogle Scholar

  • Stebbins, G. T. , Carrillo, M. C. , Dorfman, J. , Dirksen, C. , Desmond, J. E. , Turner, D. A. , … Gabrieli, J. D. (2002). Aging effects on memory encoding in the frontal lobes. Psychology and Aging, 17, 44–55. First citation in articleCrossrefGoogle Scholar

  • Swick, D. , Senkfor, A. J. , Van Petten, C. (2006). Source memory retrieval is affected by aging and prefrontal lesions: Behavioral and ERP evidence. Brain Research, 1107, 161–176. doi: S0006-8993(06)01664-7 [pii]10.1016/j.brainres.2006.06.013 First citation in articleCrossrefGoogle Scholar

  • Thompson-Schill, S. L. , D’Esposito, M. , Aguirre, G. K. , Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94, 14792–14797. First citation in articleGoogle Scholar

  • Tulving, E. (1993). What is episodic memory? Current Directions in Psychological Science, 2, 67–70. First citation in articleCrossrefGoogle Scholar

  • Vilberg, K. L. , Moosavi, R. F. , Rugg, M. D. (2006). The relationship between electrophysiological correlates of recollection and amount of information retrieved. Brain Research, 1122, 161–170. First citation in articleCrossrefGoogle Scholar

  • Wagner, A. D. , Schacter, D. L. , Koutstaal, M. R. W. , Maril, A. , Dale, A. M. , Rosen, B. R. , Buckner, R. L. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191. First citation in articleCrossrefGoogle Scholar

  • Wais, P. E. , Kim, O. Y. , Gazzaley, A. (2012). Distractibility during episodic retrieval is exacerbated by perturbation of left ventrolateral prefrontal cortex. Cerebral Cortex, 22, 717–724. doi: 10.1093/cercor/bhr160 First citation in articleCrossrefGoogle Scholar

  • Wegesin, D. J. , Friedman, D. , Varughese, N. , Stern, Y. (2002). Age-related changes in source memory retrieval: An ERP replication and extension. Cognitive Brain Research, 13, 323–338. First citation in articleCrossrefGoogle Scholar

  • Wilding, E. L. (2000). In what way does the parietal ERP old/new effect index recollection? International Journal of Psychophysiology, 35, 81–87. First citation in articleCrossrefGoogle Scholar

  • Wolk, D. A. , Sen, N. M. , Chong, H. , Riis, J. L. , McGinnis, S. M. , Holcomb, P. J. , Daffner, K. R. (2009). ERP correlates of item recognition memory: Effects of age and performance. Brain Research, 1250, 218–231. doi: S0006-8993(08)02722-4 [pii]10.1016/j.brainres.2008.11.014 First citation in articleCrossrefGoogle Scholar