Skip to main content
Article

The Relation Between Aerobic Fitness and Cognitive Performance

Is it Mediated by Brain Potentials?

Published Online:https://doi.org/10.1027/0269-8803/a000159

Abstract. This study aimed to assess whether brain potentials have significant influences on the relationship between aerobic fitness and cognition. Behavioral and electroencephalographic (EEG) data was collected from 48 young adults when performing a Posner task. Higher aerobic fitness is related to faster reaction times (RTs) along with greater P3 amplitude and shorter P3 latency in the valid trials, after controlling for age and body mass index. Moreover, RTs were selectively related to P3 amplitude rather than P3 latency. Specifically, the bootstrap-based mediation model indicates that P3 amplitude mediates the relationship between fitness level and attention performance. Possible explanations regarding the relationships among aerobic fitness, cognitive performance, and brain potentials are discussed.

References

  • Åberg, M. A. I., Pedersen, N. L., Torén, K., Svartengren, M., Bäckstrand, B., Johnsson, T. & Kuhn, H. G. (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 106, 20906–20911. doi: 10.1073/pnas.0905307106 First citation in articleCrossrefGoogle Scholar

  • American College of Sports Medicine (2013). ACSM’s guidelines for exercise testing and prescription, Lippincott Williams & Wilkins. First citation in articleGoogle Scholar

  • Baron, R. & Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. doi: 10.1037/0022-3514.51.6.1173 First citation in articleCrossrefGoogle Scholar

  • Beck, A. T., Steer, R. A. & Brown, G. K. (1996). Beck Depression Inventory Manual (2nd ed.). San Antonio, TX: Psychological Corporation. First citation in articleGoogle Scholar

  • Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., … Hillman, C. H. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172–183. doi: 10.1016/j.brainres.2010.08.049 First citation in articleCrossrefGoogle Scholar

  • Chaddock, L., Erickson, K. I., Prakash, R. S., Voss, M. W., VanPatter, M., Pontifex, M. B., … Kramer, A. F. (2011). A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biological Psychology, 89, 260–268. doi: 10.1016/j.biopsycho.2011.10.017 First citation in articleCrossrefGoogle Scholar

  • Chang, Y. K. & Etnier, J. L. (2013). The dose-response relationship between resistance exercise intensity and cognitive performance: Does heart rate mediate this effect? International Journal of Sport Psychology, 44, 37–54. First citation in articleGoogle Scholar

  • Chang, Y. K., Huang, C. J., Chen, K. F. & Hung, T. M. (2013). Physical activity and working memory in healthy older adults: An ERP study. Psychophysiology, 50, 1174–1182. doi: 10.1111/psyp.12089 First citation in articleCrossrefGoogle Scholar

  • Chang, Y. K., Tsai, Y. J., Chen, T. T. & Hung, T. M. (2013). The impacts of coordinative exercise on executive function in kindergarten children: An ERP study. Experimental Brain Research, 225, 187–196. doi: 10.1007/s00221-012-3360-9 First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., … Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 3316–3321. doi: 10.1073/pnas.0400266101 First citation in articleCrossrefGoogle Scholar

  • Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. doi: 10.1038/nrn755 First citation in articleCrossrefGoogle Scholar

  • Donchin, E. & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374. doi: 10.1017/S0140525X00058027 First citation in articleCrossrefGoogle Scholar

  • Dunn, A. L., Marcus, B. H., Kampert, J. B., Garcia, M. E., Kohl, H. W. III & Blair, S. N. (1999). Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness. JAMA: The Journal of the American Medical Association, 281, 327–334. doi: 10-1001/pubs.JAMA-ISSN-0098-7484-282-16-jbk1027 First citation in articleCrossrefGoogle Scholar

  • Efron, B. & Tibshirani, R. J. (1993). An introduction to the Bootstrap. New York, NY: Chapman & Hall. First citation in articleCrossrefGoogle Scholar

  • Eimer, M. (1993). Spatial cueing, sensory gating and selective response preparation: An ERP study on visuo-spatial orienting. Electroencephalography and Clinical Neurophysiology, 88, 408–420. doi: 10.1016/0168-5597(93)90017-J First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., … Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030–1039. doi: 10.1002/hipo.20547 First citation in articleCrossrefGoogle Scholar

  • Fabiani, M., Gratton, G. & Coles, M. G. (2009). Event-Related Brain Potentials: Methods, theory, and applications. In J. T. CacioppoL. G. TassinaryG. G. BerntsonEds., Handbook of psychophysiology (pp. 53–76). New York, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Flores, A. B., Gómez, C. M. & Meneres, S. (2010). Evaluation of spatial validity-invalidity by the P300 component in children and young adults. Brain Research Bulletin, 81, 525–533. doi: 10.1016/j.brainresbull.2010.01.005 First citation in articleCrossrefGoogle Scholar

  • Folstein, M. F., Folstein, S. E. & McHugh, P. R. (1975). Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. First citation in articleCrossrefGoogle Scholar

  • Gajewski, P. D. & Falkenstein, M. (2015a). Lifelong physical activity and executive functions in older age assessed by memory based task switching. Neuropsychologia, 73, 195–207. doi: 10.1016/j.neuropsychologia.2015.04.031 First citation in articleCrossrefGoogle Scholar

  • Gajewski, P. D. & Falkenstein, M. (2015b). Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain and Cognition, 98, 87–101. doi: 10.1016/j.bandc.2015.06.004 First citation in articleCrossrefGoogle Scholar

  • Gómez, C. M., Flores, A., Digiacomo, M. R., Ledesma, A. & González-Rosa, J. (2008). P3a and P3b components associated to the neurocognitive evaluation of invalidly cued targets. Neuroscience Letters, 430, 181–185. doi: 10.1016/j.neulet.2007.10.049 First citation in articleCrossrefGoogle Scholar

  • Hatta, A., Nishihira, Y., Kim, S. R., Kaneda, T., Kida, T., Kamijo, K., … Haga, S. (2005). Effects of habitual moderate exercise on response processing and cognitive processing in older adults. The Japanese Journal of Physiology, 55, 29–36. doi: 10.2170/jjphysiol.R2068 First citation in articleCrossrefGoogle Scholar

  • Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76, 408–420. doi: 10.1080/03637750903310360 First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Belopolsky, A. V., Snook, E. M., Kramer, A. F. & McAuley, E. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75, 176–185. doi: 10.1080/02701367.2004.10609149 First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B. & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45, 114–129. doi: 10.1037/a0014437 First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Castelli, D. M. & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine & Science in Sports & Exercise, 37, 1967–1974. doi: 10.1249/01.mss.0000176680.79702.ce First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Erickson, K. I. & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews. Neuroscience, 9, 58–65. doi: 10.1038/nrn2298 First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Kramer, A. F., Belopolsky, A. V. & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59, 30–39. doi: 10.1016/j.ijpsycho.2005.04.009 First citation in articleCrossrefGoogle Scholar

  • Holm, A., Ranta-aho, P. O., Sallinen, M., Karjalainen, P. A. & Müller, K. (2006). Relationship of P300 single-trial responses with reaction time and preceding stimulus sequence. International Journal of Psychophysiology, 61, 244–252. doi: 10.1016/j.ijpsycho.2005.10.015 First citation in articleCrossrefGoogle Scholar

  • Hötting, K. & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37, 2243–2257. doi: 10.1038/nrn2298 First citation in articleCrossrefGoogle Scholar

  • Johnson, R. (1993). On the neural generators of the P300 component of the event-related potential. Psychophysiology, 30, 90–97. doi: 10.1111/j.1469-8986.1993.tb03208.x First citation in articleCrossrefGoogle Scholar

  • Judd, C. M. & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 2, 602–619. First citation in articleCrossrefGoogle Scholar

  • Kalyani, M. N., Ebadi, A., Mehri, S. N. & Jamshidi, N. (2008). Comparing the effect of fire-fighting protective clothes and usual work clothes on aerobic capacity (VO2max). Pakistan Journal of Medical Sciences, 24, 678–683. First citation in articleGoogle Scholar

  • Kamijo, K. & Takeda, Y. (2009). General physical activity levels influence positive and negative priming effects in young adults. Clinical Neurophysiology, 120, 511–519. doi: 10.1016/j.clinph.2008.11.022 First citation in articleCrossrefGoogle Scholar

  • Kamijo, K. & Takeda, Y. (2010). Regular physical activity improves executive function during task switching in young adults. International Journal of Psychophysiology, 75, 304–311. doi: 10.1016/j.ijpsycho.2010.01.002 First citation in articleCrossrefGoogle Scholar

  • Katayama, J. I. & Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 23–33. doi: 10.1111/1469-8986.3510023 First citation in articleCrossrefGoogle Scholar

  • Kida, T., Nishihira, Y., Hatta, A., Wasaka, T., Nakata, H., Sakamoto, M. & Nakajima, T. (2003). Changes in the somatosensory N250 and P300 by the variation of reaction time. European Journal of Applied Physiology, 89, 326–330. doi: 10.1007/s00421-003-0801-y First citation in articleCrossrefGoogle Scholar

  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577. doi: 10.1017/S0048577201990559 First citation in articleCrossrefGoogle Scholar

  • Kutas, M. & Dale, A. (1997). Electrical and magnetic readings of mental functions. In M. D. RuggEd., Cognitive neuroscience (pp. 197–242). Hove, East Sussex, UK: Psychology Press. First citation in articleGoogle Scholar

  • Lo, Y. H., Liang, W. K., Lee, H. W., Wang, C. H., Tzeng, O., Hung, D. & Juan, C. H. (2013). The neural development of response inhibition in 5- and 6-year-old preschoolers: An ERP and EEG study. Developmental Neuropsychology, 38, 301–316. doi: 10.1080/87565641.2013.801980 First citation in articleCrossrefGoogle Scholar

  • MacKinnon, D. P., Lockwood, C. M. & Hoffman, J. M. (2007). Mediation analyses. Annual Review of Psychology, 58, 593–641. doi: 10.1146/annurev.psych.58.110405.085542 First citation in articleCrossrefGoogle Scholar

  • Mangun, G. R. & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17, 1057–1074. doi: 10.1037/0096-1523.17.4.1057 First citation in articleCrossrefGoogle Scholar

  • McCarthy, G. & Donchin, E. (1981). A metric for thought: A comparison of P300 latency and reaction time. Science, 211, 77–80. doi: 10.1126/science.7444452 First citation in articleCrossrefGoogle Scholar

  • Moore, R. D., Drollette, E. S., Scudder, M. R., Bharij, A. & Hillman, C. H. (2014). The influence of cardiorespiratory fitness on strategic, behavioral, and electrophysiological indices of arithmetic cognition in preadolescent children. Frontiers in Human Neuroscience, 8, 258. doi: 10.3389/fnhum.2014.00258 First citation in articleCrossrefGoogle Scholar

  • Nevitt, J. & Hancock, G. R. (2001). Performance of bootstrapping approaches to model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling, 8, 353–377. doi: 10.1207/S15328007SEM0803_2 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., Aston-Jones, G. & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131, 510–532. doi: 10.1037/0033-2909.131.4.510 First citation in articleCrossrefGoogle Scholar

  • Perchet, C. & García-Larrea, L. (2000). Visuospatial attention and motor reaction in children: An electrophysiological study of the “Posner” paradigm. Psychophysiology, 37, 231–241. doi: 10.1111/1469-8986.3720231 First citation in articleCrossrefGoogle Scholar

  • Perchet, C., Revol, O., Fourneret, P., Mauguière, F. & Garcia-Larrea, L. (2001). Attention shifts and anticipatory mechanisms in hyperactive children: An ERP study using the Posner paradigm. Biological Psychiatry, 50, 44–57. doi: 10.1016/S0006-3223(00)01119-7 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019 First citation in articleCrossrefGoogle Scholar

  • Polich, J. & Criado, J. R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60, 172–185. doi: 10.1016/j.ijpsycho.2005.12.012 First citation in articleCrossrefGoogle Scholar

  • Polich, J. & Lardon, M. T. (1997). P300 and long-term physical exercise. Electroencephalography and Clinical Neurophysiology, 103, 493–498. doi: 10.1016/S0013-4694(97)96033-8 First citation in articleCrossrefGoogle Scholar

  • Pontifex, M. B., Hillman, C. H. & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46, 379–387. doi: 10.1111/j.1469-8986.2008.00782.x First citation in articleCrossrefGoogle Scholar

  • Pontifex, M. B., Parks, A. C., Henning, D. A. & Kamijo, K. (2015). Single bouts of exercise selectively sustain attentional processes. Psychophysiology, 52, 618–625. doi: 10.1111/psyp.12395 First citation in articleCrossrefGoogle Scholar

  • Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J. & Hillman, C. H. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23, 1332–1345. doi: 10.1162/jocn.2010.21528 First citation in articleCrossrefGoogle Scholar

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25. doi: 10.1080/00335558008248231 First citation in articleCrossrefGoogle Scholar

  • Preacher, K. J. & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731. doi: 10.3758/BF03206553 First citation in articleCrossrefGoogle Scholar

  • Shay, K. A. & Roth, D. L. (1992). Association between aerobic fitness and visuospatial performance in healthy older adults. Psychology and Aging, 7, 15–24. doi: 10.1037/0882-7974.7.1.15 First citation in articleCrossrefGoogle Scholar

  • Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. In N. TumaEd., Sociological methodology (pp. 159–186). Washington, DC: American Sociological Association. First citation in articleGoogle Scholar

  • Stroth, S., Hille, K., Spitzer, M. & Reinhardt, R. (2009). Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychological Rehabilitation, 19, 223–243. doi: 10.1080/09602010802091183 First citation in articleCrossrefGoogle Scholar

  • Themanson, J. R., Pontifex, M. B. & Hillman, C. H. (2008). Fitness and action monitoring: Evidence for improved cognitive flexibility in young adults. Neuroscience, 157, 319–328. doi: 10.1016/j.neuroscience.2008.09.014 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L. (2009). The effectiveness of exercise intervention on inhibitory control in children with developmental coordination disorder: Using a visuospatial attention paradigm as a model. Research in Developmental Disabilities, 30, 1268–1280. doi: 10.1016/j.ridd.2009.05.001 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Chang, Y. K., Chen, F. C., Hung, T. M., Pan, C. Y. & Wang, C. H. (2014). Effects of cardiorespiratory fitness enhancement on deficits in visuospatial working memory in children with developmental coordination disorder: A cognitive electrophysiological study. Archives of Clinical Neuropsychology, 29, 173–185. doi: 10.1093/arclin/act081 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Chang, Y. K., Hung, T. M., Tseng, Y. T. & Chen, T. C. (2012). The neurophysiological performance of visuospatial working memory in children with developmental coordination disorder. Developmental Medicine & Child Neurology, 54, 1075–1076. doi: 10.1111/j.1469-8749.2012.04408.x First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H. & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121–131. doi: 10.1016/j.psyneuen.2013.12.014 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Pan, C. Y., Cherng, R. J., Hsu, Y. W. & Chiu, H. H. (2009). Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: A neurophysiological measure of the endogenous Posner paradigm. Brain and Cognition, 71, 246–258. doi: 10.1016/j.bandc.2009.08.006 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L. & Wang, W. L. (2015). Exercise-mode-related changes in task-switching performance in the elderly. Frontiers in Behavioral Neuroscience, 9, 56. doi: 10.3389/fnbeh.2015.00056 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H. & Chou, F. Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Frontiers in Behavioral Neuroscience, 8, 262. doi: 10.3389/fnbeh.2014.00262 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Wang, C. H., Pan, C. Y. & Chen, F. C. (2015). The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Frontiers in Behavioral Neuroscience, 9, 23. doi: 10.3389/fnbeh.2015.00023 First citation in articleCrossrefGoogle Scholar

  • Tsai, C. L., Wang, C. H. & Tseng, Y. T. (2012). Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder. Brain and Cognition, 79, 12–22. doi: 10.1016/j.bandc.2012.02.004 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11, 343–356. doi: 10.1017/S0140525X00058015 First citation in articleCrossrefGoogle Scholar

  • Verstynen, T. D., Lynch, B., Miller, D. L., Voss, M. W., Prakash, R. S., Chaddock, L., … Erickson, K. I. (2012). Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. Journal of Aging Research, 2012, 939285. doi: 10.1155/2012/939285 First citation in articleCrossrefGoogle Scholar

  • Wang, C. H., Liang, W. K., Tseng, P., Muggleton, N. G., Juan, C. H. & Tsai, C. L. (2015). The relationship between aerobic fitness and neural oscillations during visuo-spatial attention in young adults. Experimental Brain Research, 233, 1069–1078. doi: 10.1007/s00221-014-4182-8 First citation in articleCrossrefGoogle Scholar

  • Wang, C. H., Tsai, C. L., Tseng, P., Yang, Albert. C., Lo, M. T., Peng, C. K., … Liang, W. K. (2014). The association of physical activity to neural adaptability during visuo-spatial processing in healthy elderly adults: A multiscale entropy analysis. Brain and Cognition, 92, 73–83. doi: 10.1016/j.bandc.2014.10.006 First citation in articleCrossrefGoogle Scholar

  • Wang, C. H., Tsai, C. L., Tu, K. C., Muggleton, N., Juan, C. H. & Liang, W. K. (2015). Modulation of brain oscillations during visuo-spatial processing: A comparison between female colligate badminton players and sedentary controls. Psychology of Sport and Exercise, 16, 121–129. doi: 10.1016/j.psychsport.2014.10.003 First citation in articleCrossrefGoogle Scholar

  • Warburton, D. E. R., Nicol, C. W. & Bredin, S. S. (2006). Health benefits of physical activity: The evidence. Canadian Medical Association Journal, 174, 801–809. doi: 10.1503/cmaj.051351 First citation in articleCrossrefGoogle Scholar

  • Whiteman, A., Young, D. E., He, X., Chen, T. C., Wagenaar, R. C., Stern, C. & Schon, K. (2013). Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behavioral Brain Research, 249, 302–312. doi: 10.1016/j.bbr.2013.11.023 First citation in articleCrossrefGoogle Scholar

  • Williams, J. & MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling, 15, 23–51. First citation in articleCrossrefGoogle Scholar

  • Wright, M. J., Geffen, G. M. & Geffen, L. B. (1995). Event related potentials during covert orientation of visual attention: Effects of cue validity and directionality. Biological Psychology, 41, 183–202. doi: 10.1016/0301-0511(95)05128-7 First citation in articleCrossrefGoogle Scholar