Skip to main content
Article

Impaired Error Processing and Semantic Processing During Multitasking

Published Online:https://doi.org/10.1027/0269-8803/a000178

Abstract. Neuronal mechanisms of error processing under multitasking and their impact on the processing of a concurrent task were examined. Twenty-one younger and twenty older healthy adults performed a visual-motor flanker task or an auditory-vocal semantic task or both tasks simultaneously. During task performance the electroencephalogram (EEG) was continuously recorded. The event-related potential (ERP) was derived from the EEG, and ERP components associated with error processing (Ne and Pe) and semantic processing (N400) were analyzed. Older participants responded more slowly than younger ones in the flanker task regardless of the multitasking condition, while accuracy was equal in both groups. In the flanker task, multitasking led to an increase of error rates, a reduction of reaction times, and a disappearance of post-error slowing (PES). Error detection (Ne) was delayed and error awareness (Pe) attenuated in the single flanker task relative to the multitasking condition. In the semantic task, multitasking led to an increase of reaction times and a delay of the N400 in particular when an error in the flanker task occurred. First, these results indicate that multitasking impaired error processing, in particular conscious error perception (Pe) and abolished post-error adjustments of performance (PES) which may have resulted in a more risky response tendency in the flanker task. Second, multitasking impaired semantic processing, in particular after an error in the concurrent flanker task. Hence, multitasking compromised error processing and error prevention in one of the tasks, and semantic processing in the other task. Consequently, multitasking should be avoided at workplaces with error-prone job assignments or where poor understanding of communication may have serious consequences.

References

  • Allwood, C. M. (1984). Error detection processes in statistical problem solving. Cognitive Science, 8, 413–437. doi: 10.1207/s15516709cog0804_5 First citation in articleCrossrefGoogle Scholar

  • Band, G. P. H. & Kok, A. (2000). Age effects on response monitoring in a mental-rotation task. Biological Psychology, 51, 201–221. doi: 10.1016/S0301-0511(99)00038-1 First citation in articleCrossrefGoogle Scholar

  • BAuA, Bundesanstalt f. Arbeitsschutz u. Arbeitsmedizin (Federal Institute for Occupational Safety and Health). (2012). BIBB/BAuA-Erwerbstätigenbefragung 2011/2012 [BIBB/BAuA – Survey on employees 2011/2012]. Retrieved from http://www.baua.de/dok/3056884 First citation in articleGoogle Scholar

  • Binnie, C. D., Cooper, R., Mauguiere, F., Osselton, J. W., Prior, P. F. & Tedman, B. M. (2003). Clinical Neurophysiology. EEG, paediatric neurophysiology, special techniques and applications (Vol. 2). Amsterdam, The Netherlands: Elsevier Sciences. doi: 10.1016/j.clinph.2004.03.001 First citation in articleCrossrefGoogle Scholar

  • Blavier, A., Rouy, E., Nyssen, A. S. & De Keyser, V. (2005). Prospective issues for error detection. Ergonomics, 48, 758–781. doi: 10.1080/00140130500123670 First citation in articleCrossrefGoogle Scholar

  • Coles, M. G. H., Scheffers, M. K. & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error processing. Biological Psychology, 56, 173–189. doi: 10.1016/S0301-0511(01)00076-X First citation in articleCrossrefGoogle Scholar

  • Danielmeier, C. & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233. doi: 10.3389/fpsyg.2011.00233 First citation in articleCrossrefGoogle Scholar

  • Danielmeier, C., Wessel, J. R., Steinhauser, M. & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46, 1288–1298. doi: 10.1111/j.1469-8986.2009.00860.x First citation in articleCrossrefGoogle Scholar

  • De Pisapia, N., Repovš, G. & Braver, T. S. (2008). Computational models of attention and cognitive control. In R. SunEd., The Cambridge handbook of computational psychology (pp. 422–450). New York, NY: Cambridge University Press. doi: 10.1017/CBO9780511816772 First citation in articleCrossrefGoogle Scholar

  • Dutilh, G., Forstmann, B. U., Vandekerckhove, J. & Wagenmakers, E. J. (2013). A diffusion model account of age differences in posterror slowing. Psychology & Aging, 28, 64–76. doi: 10.1037/a0029875 First citation in articleCrossrefGoogle Scholar

  • Endrass, T., Schreiber, M. & Kathmann, N. (2012). Speeding up older adults: Age-effects on error processing in speed and accuracy conditions. Biological Psychology, 89, 426–432. doi: 10.1016/j.biopsycho.2011.12.005 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455. doi: 10.1016/0013-4694(91)90062-9 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M., Hoormann, J., Christ, S. & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107. doi: 10.1016/S0301-0511(99)00031-9 First citation in articleCrossrefGoogle Scholar

  • Friedman, A. & Polson, M. C. (1981). Hemispheres as independent resource systems: Limited-capacity processing and cerebral specialization. Journal of Experimental Psychology: Human Perception and Performance, 7, 1031–1058. doi: 10.1037/0096-1523.7.5.1031 First citation in articleCrossrefGoogle Scholar

  • Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E. & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390. doi: 10.1111/j.1467-9280.1993.tb00586.x First citation in articleCrossrefGoogle Scholar

  • Gehring, W. J., Liu, Y., Orr, J. M. & Carp, J. (2012). The Error-Related Negativity (ERN/Ne). In E. S. KappenmanS. J. LuckEds., The Oxford handbook of event-related potential components (pp. 231–291). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Gehring, W. J. & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279–2282. doi: 10.1126/science.1066893 First citation in articleCrossrefGoogle Scholar

  • Göthe, K., Oberauer, K. & Kliegl, R. (2007). Age differences in dual-task performance after practice. Psychology & Aging, 22, 596–606. doi: 10.1037/0882-7974.22.3.596 First citation in articleCrossrefGoogle Scholar

  • Hajcak, G.., McDonald, N. & Simons, R. F. (2003). Anxiety and error-related brain activity. Biological Psychology, 64, 77–90. doi: 10.1016/S0301-0511(03)00103-0 First citation in articleCrossrefGoogle Scholar

  • Hein, G. & Schubert, T. (2004). Aging and input processing in dual-task situations. Psychology and Aging, 19, 416–432. doi: 10.1037/0882-7974.19.3.416 First citation in articleCrossrefGoogle Scholar

  • Hendy, K. C., Liao, J. & Milgram, P. (1997). Combining time and intensity effects in assessing operator information-processing load. Human Factors, 39, 30–47. doi: 10.1518/001872097778940597 First citation in articleCrossrefGoogle Scholar

  • Hoffmann, S. & Falkenstein, M. (2011). Aging and error processing: age related increase in the variability of the error-negativity is not accompanied by increase in response variability. PLoS One, 6, e17482. doi: 10.1371/journal.pone.0017482 First citation in articleCrossrefGoogle Scholar

  • Hohlfeld, A., Mierke, K. & Sommer, W. (2004). Is word perception in a second language more vulnerable than in one’s native language? Evidence from brain potentials in a dual task setting. Brain and Language, 89, 569–579. doi: 10.1016/j.bandl.2004.02.002 First citation in articleCrossrefGoogle Scholar

  • Hohlfeld, A., Sangals, J. & Sommer, W. (2004). Effects of additional tasks on language perception: An event-related brain potential investigation. Journal of Experimental Psychology: Learning, Memory and Cognition, 30, 1012–1025. doi: 10.1037/0278-7393.30.5.1012 First citation in articleCrossrefGoogle Scholar

  • Hohlfeld, A. & Sommer, W. (2005). Semantic processing of unattended meaning is modulated by additional task load: Evidence from electrophysiology. Cognitive Brain Research, 24, 500–512. doi: 10.1016/j.cogbrainres.2005.03.001 First citation in articleCrossrefGoogle Scholar

  • Hohlfeld, A., Ullsperger, P. & Sommer, W. (2008). How does the incrementality of auditory word perception interplay with episodic and semantic memory? Journal of Neurolinguistics, 21, 279–293. doi: 10.1016/j.jneuroling.2007.06.002 First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B. & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi: 10.1037/0033-295X.109.4.679 First citation in articleCrossrefGoogle Scholar

  • Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall. doi: 10.2307/1421603 First citation in articleCrossrefGoogle Scholar

  • Kiefer, J., Schulz, M., Schulze-Kissing, D. & Urbas, L. (2006). Multitasking-Strategien in der Mensch-Maschine-Interaktion [Multitasking strategies in the human-machine interaction]. MMI-Interaktiv, 11, 26–42. First citation in articleGoogle Scholar

  • Kieras, D. E. & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12, 391–438. doi: 10.1207/s15327051hci1204_4 First citation in articleCrossrefGoogle Scholar

  • Kutas, M. & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205. doi: 10.1126/science.7350657 First citation in articleCrossrefGoogle Scholar

  • Lavro, D. & Berger, A. (2015). The cost of errors: Perceived error detection in dual-task conditions. Acta Psychologica, 158, 1–7. doi: 10.1016/j.actpsy.2015.03.006 First citation in articleCrossrefGoogle Scholar

  • Maier, M. E., di Pellegrino, G. & Steinhaus, M. (2012). Enhanced error-related negativity on flanker errors: Error expectancy or error significance? Psychophysiology, 49, 899–908. doi: 10.1111/j.1469-8986.2012.01373.x First citation in articleCrossrefGoogle Scholar

  • Mathewson, K. J., Dywan, J. & Segalowitz, S. J. (2005). Brain bases of error-related ERPs as influenced by age and task. Biological Psychology, 70, 88–104. doi: 10.1016/j.biopsycho.2004.12.005 First citation in articleCrossrefGoogle Scholar

  • Navon, D. & Gopher, D. (1979). On the economy of the human processing system. Psychological Review, 86, 214–253. doi: 10.1037/0033-295X.86.3.214 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S. T., Ridderinkhof, K. R., Blom, J., Band, G. P. H. & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38, 752–760. doi: 10.1111/1469-8986.3850752 First citation in articleCrossrefGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi: 10.1016/0028-3932(71)90067-4 First citation in articleCrossrefGoogle Scholar

  • Overbeek, T. J. M., Nieuwenhuis, S. & Ridderinkhof, K. R. (2005). Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. Journal of Psychophysiology, 19, 319–329. doi: 10.1027/0269-8803.19.4.319 First citation in articleLinkGoogle Scholar

  • Paridon, H. (2010). Multitasking in realitätsnahen Situationen [Multitasking in realistic settings] Ergo-Med, 34, 114–121. First citation in articleGoogle Scholar

  • Pashler, H. (1992). Attentional limitations in doing two tasks at the same time. Current Directions in Psychological Science, 1, 44–48. doi: 10.1111/1467-8721.ep11509734 First citation in articleCrossrefGoogle Scholar

  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244. doi: 10.1037/0033-2909.116.2.220 First citation in articleCrossrefGoogle Scholar

  • Pfabigan, D. M., Pintzinger, N. M., Siedek, D. R., Lamm, C., Derntl, B. & Sailer, U. (2013). Feelings of helplessness increase ERN amplitudes in healthy individuals. Neuropsychologia, 51, 613–621. doi: 10.1016/j.neuropsychologia.2012.12.008 First citation in articleCrossrefGoogle Scholar

  • Rabbitt, P. & Rodgers, B. (1977). What does a man do after he makes an error? An analysis of response programming. The Quarterly Journal of Experimental Psychology, 29, 727–743. doi: 10.1080/14640747708400645 First citation in articleCrossrefGoogle Scholar

  • Reason, J. (1990). Human error. New York, NY: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Riby, L. M., Perfect, T. J. & Stollery, B. T. (2004). The effects of age and task domain on dual task performance: A meta-analysis. European Journal of Cognitive Psychology, 16, 863–891. doi: 10.1080/09541440340000402 First citation in articleCrossrefGoogle Scholar

  • Ruthruff, E., Hazeltine, E. & Remington, R. W. (2006). What causes residual dual-task interference after practice? Psychological Research, 70, 494–503. doi: 10.1007/s00426-005-0012-8 First citation in articleCrossrefGoogle Scholar

  • Ruthruff, E., Pashler, H. E. & Klaassen, A. (2001). Processing bottlenecks in dual-task performance: Structural limitation or strategic postponement? Psychonomic Bulletin & Review, 8, 73–80. doi: 10.3758/BF03196141 First citation in articleCrossrefGoogle Scholar

  • Salvucci, D. D. & Taatgen, N. A. (2008). Threaded cognition: An Integrated Theory of Concurrent Multitasking. Psychological Review, 115, 101–130. doi: 10.1037/0033-295X.115.1.101 First citation in articleCrossrefGoogle Scholar

  • Salvucci, D. D. & Taatgen, N. A. (2010). The multitasking mind: Oxford series on cognitive models and architectures. New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Sellen, A. J. (1994). Detection of everyday errors. Applied Psychology, 43, 475–498. doi: 10.1111/j.1464-0597.1994.tb00841.x First citation in articleCrossrefGoogle Scholar

  • Shappell, S. A. & Wiegmann, D. A. (1997). A human error approach to accident investigation: The taxonomy of unsafe operations. The International Journal of Aviation Psychology, 7, 269–291. doi: 10.1207/s15327108ijap0704_2 First citation in articleCrossrefGoogle Scholar

  • Sit, R. A. & Fisk, A. D. (1999). Age-related performance in a multiple-task environment. Human Factors: The Journal of the Human Factors and Ergonomics Society, 41, 26–34. doi: 10.1518/001872099779577345 First citation in articleCrossrefGoogle Scholar

  • Sommer, W. & Hohlfeld, A. (2008). Overlapping tasks methodology as a tool for investigating language perception. In Z. BreznitzEd., Brain Research in Language (pp. 125–152). New York, NY: Springer. doi: 10.1007/978-0-387-74980-8_5 First citation in articleCrossrefGoogle Scholar

  • Strobach, T., Frensch, P., Müller, H. J. & Schubert, T. (2012). Testing the limits of optimizing dual-task performance in younger and older adults. Fronties in Human Neuroscience, 6, 1–12. doi: 10.3389/fnhum.2012.00039 First citation in articleCrossrefGoogle Scholar

  • Themanson, J. R., Ball, A. B., Khatcherian, S. M. & Rosen, P. J. (2014). The effects of social exclusion on the ERN and the cognitive control of action monitoring. Psychophysiology, 51, 215–225. doi: 10.1111/psyp.12172 First citation in articleCrossrefGoogle Scholar

  • Tombu, M. & Jolicoeur, P. (2004). Virtually no evidence for virtually perfect time-sharing. Journal of Experimental Psychology: Human Perception and Performance, 30, 795–810. doi: 10.1037/0096-1523.30.5.795 First citation in articleCrossrefGoogle Scholar

  • Tun, P. A. & Wingfield, A. (1995). “Does dividing attention become harder with age? Findings from divided attention questionnaire”. Aging, Neuropsychology, and Cognition, 2, 39–66. doi: 10.1080/13825589508256588 First citation in articleCrossrefGoogle Scholar

  • Ullsperger, M., Fischer, A. G., Nigbur, R. & Endrass, T. (2014). Neural mechanisms and temporal dynamics of performance monitoring. Trends in Cognitive Sciences, 18, 259–267. doi: 10.1016/j.tics.2014.02.009 First citation in articleCrossrefGoogle Scholar

  • Van Cott, H. (1994). Human errors: Their causes and reduction. In R. S. BognerEd., Human error in medicine (pp. 53–91). Hillsdale, NJ: Erlbaum. doi: 10.1080/00140139608964510 First citation in articleCrossrefGoogle Scholar

  • Van Selst, M., Ruthruff, E. & Johnston, J. C. (1999). Can practice eliminate the Psychological Refractory Period effect? Journal of Experimental Psychology: Human Perception and Performance, 25, 1268–1283. doi: 10.1037/0096-1523.25.5.1268 First citation in articleCrossrefGoogle Scholar

  • Verhaeghen, P., Steitz, D. W., Sliwinski, M. J. & Cerella, J. (2003). Aging and dual-task performance: A meta-analysis. Psychology and Aging, 18, 443–460. doi: 10.1037/0882-7974.18.3.443 First citation in articleCrossrefGoogle Scholar

  • Welford, A. T. (1952). The “psychological refractory period” and the timing of high-speed performance – a review and a theory. British Journal of Psychology, 43, 2–19. doi: 10.1111/j.2044-8295.1952.tb00322.x First citation in articleCrossrefGoogle Scholar

  • Wickens, C. D. (1980). The structure of attentional resources. In R. S. NickersonEd., Attention and performance VIII (pp. 239–257). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3, 159–177. doi: 10.1080/14639220210123806 First citation in articleCrossrefGoogle Scholar

  • Wild-Wall, N., Hahn, M. & Falkenstein, M. (2011). Preparatory processes and compensatory effort in older and younger participants in a driving-like dual task. Human Factors, 53, 91–102. doi: 10.1177/0018720811402068 First citation in articleCrossrefGoogle Scholar

  • Yeung, N., Botvinick, M. M. & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959. doi: 10.1037/0033-295X.111.4.939 First citation in articleCrossrefGoogle Scholar