Skip to main content
Article

Task-Switching Training and Transfer

Age-Related Effects on Late ERP Components

Published Online:https://doi.org/10.1027/0269-8803/a000189

Abstract. We used task-switching (TS) paradigms to study how cognitive training can compensate age-related cognitive decline. Thirty-nine young (age span: 18–25 years) and 40 older (age span: 60–75 years) women were assigned to training and control groups. The training group received 8 one-hour long cognitive training sessions in which the difficulty level of TS was individually adjusted. The other half of the sample did not receive any intervention. The reference task was an informatively cued TS paradigm with nogo stimuli. Performance was measured on reference, near-transfer, and far-transfer tasks by behavioral indicators and event-related potentials (ERPs) before training, 1 month after pretraining, and in case of older adults, 1 year later. The results showed that young adults had better pretraining performance. The reference task was too difficult for older adults to form appropriate representations as indicated by the behavioral data and the lack of P3b components. But after training older adults reached the level of performance of young participants, and accordingly, P3b emerged after both the cue and the target. Training gain was observed also in near-transfer tasks, and partly in far-transfer tasks; working memory and executive functions did not improve, but we found improvement in alerting and orienting networks, and in the execution of variants of TS paradigms. Behavioral and ERP changes remained preserved even after 1 year. These findings suggest that with an appropriate training procedure older adults can reach the level of performance seen in young adults and these changes persist for a long period. The training also affects the unpracticed tasks, but the transfer depends on the extent of task similarities.

References

  • Astle, D. E., Jackson, G. M. & Swainson, R. (2006). Dissociating neural indices of dynamic cognitive control in advance task-set preparation: An ERP study of task-switching. Brain Research, 1125, 94–103. doi: 10.1016/j.brainres.2006.09.092 First citation in articleCrossrefGoogle Scholar

  • Au, J., Sheehan, E., Tsai, N. & Duncan, G. J. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin & Review, 22, 366–377. doi: 10.3758/s13423-014-0699-x First citation in articleCrossrefGoogle Scholar

  • Baniqued, P., Kranz, M. B., Voss, M., Lee, H., Cosman, J. D., Severson, J. & Kramer, A. F. (2014). Cognitive training with causal video games: Points to consider. Frontiers in Psychology, 4, 1010. doi: 10.3389/fpsyg.2013.01010 First citation in articleCrossrefGoogle Scholar

  • Boot, W. R. & Kramer, A. F. (2014). The brain-games conundrum: Does cognitive training really sharpen the mind? Cerebrum, November, 1–15. First citation in articleGoogle Scholar

  • Boot, W. R., Simons, D. J., Stothart, C. & Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8, 445–454. doi: 10.1177/1745691613491271 First citation in articleCrossrefGoogle Scholar

  • Braver, T. S., Reynolds, J. R. & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726. doi: 10.1016/S0896-6273(03)00466-5 First citation in articleCrossrefGoogle Scholar

  • Braver, T. S. & Wesz, R. (2008). Working memory, executive control, and aging. In F. I. M. CraigT. A. SalthouseEds., The handbook of aging and cognition (3rd ed., pp. 311–372). New York, NY: Psychology Press. First citation in articleGoogle Scholar

  • Brehmer, Y., Westerberg, H. & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 63. doi: 10.3389/fnhum.2012.00063 First citation in articleCrossrefGoogle Scholar

  • Donchin, E. & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Brain Behavioral Science, 11, 357–374. doi: 10.1017/S0140525X00058027 First citation in articleCrossrefGoogle Scholar

  • Fabiani, M., Friedman, D. & Cheng, J. C. (1998). Individual differences in P3 scalp distribution in older adults, and their relationship to frontal lobe function. Psychophysiology, 35, 698–708. First citation in articleCrossrefGoogle Scholar

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I. & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26, 471–479. doi: 10.1016/j.neuroimage.2005.02.004 First citation in articleCrossrefGoogle Scholar

  • Folstein, J. R. & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170. doi: 10.1111/j.1469-8986.2007.00602.x First citation in articleCrossrefGoogle Scholar

  • Gaál, Zs. A. & Czigler, I. (2015). Age-related processing strategies and go-nogo effects in task-switching: An ERP study. Frontiers in Human Neuroscience, 9, 177. doi: 10.3389/fnhum.2015.00177 First citation in articleCrossrefGoogle Scholar

  • Gajewski, P. D. & Falkenstein, M. (2011). Diversity of the P3 in the task-switching paradigm. Brain Research, 141, 87–97. doi: 10.1016/j.brainres.2011.07.010 First citation in articleCrossrefGoogle Scholar

  • Gajewski, P. D. & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: Effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6, 130. doi: 10.3389/fnhum.2012.00130 First citation in articleCrossrefGoogle Scholar

  • Gajewski, P. D., Kleinsorge, T. & Falkenstein, M. (2010). Electrophysiological correlates of residual switch cost. Cortex, 46, 1138–1148. doi: 10.1016/j.cortex.2009.07.014 First citation in articleCrossrefGoogle Scholar

  • Hasher, L. & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. BowerEd., The psychology of learning and motivation (pp. 193–225). San Diego, CA: Academic Press. First citation in articleGoogle Scholar

  • Hillman, C. H., Kramer, A. F., Belopolsky, A. V. & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task-switching paradigm. International Journal of Psychophysiology, 59, 30–39. doi: 10.1016/j.ijpsycho.2005.04.009 First citation in articleCrossrefGoogle Scholar

  • Hölig, C. & Berti, S. (2010). To switch or not to switch: Brain potential indices of attentional control after task-relevant and task-irrelevant changes of stimulus features. Research Report, 1345, 164–175. doi: 10.1016/j.brainres.2010.05.047 First citation in articleCrossrefGoogle Scholar

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 6829–6833. doi: 10.1073/pnas.0801268105 First citation in articleCrossrefGoogle Scholar

  • Jamadar, S., Hughes, M., Fulham, W. R., Michie, P. T. & Karayanidis, F. (2010). The spatial and temporal dynamics of anticipatory preparation and response inhibition in task switching. NeuroImage, 51, 432–449. doi: 10.1016/j.neuroimage.2010.01.090 First citation in articleCrossrefGoogle Scholar

  • Jones, S., Nyberg, L., Sandblom, J., Neely, A. S., Ingvar, M., Petersson, K. M. & Bäckmann, L. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. Neuroscience and Biobehavioral Reviews, 30, 864–871. doi: 10.1016/j.neubiorev.2006.06.012 First citation in articleCrossrefGoogle Scholar

  • Karayanidis, F. C., Coltheart, M., Michie, P. T. & Murphy, K. (2003). Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology, 40, 329–348. doi: 10.1111/1469-8986.00037 First citation in articleCrossrefGoogle Scholar

  • Karayanidis, F. W., Whitson, L. R., Heathcote, A. & Mitchie, P. T. (2011). Variability in proactive and reactive cognitive control processes across the adult lifespan. Frontiers in Psychology, 2, 318. doi: 10.3389/fpsyg.2011.00318 First citation in articleCrossrefGoogle Scholar

  • Karbach, J. & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12, 978–990. doi: 10.1111/j.1467-7687.2009.00846.x First citation in articleCrossrefGoogle Scholar

  • Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C. & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15, 28–43. doi: 10.1016/j.arr.2014.02.004 First citation in articleCrossrefGoogle Scholar

  • Kieffaber, P. D. & Hetrick, W. P. (2005). Event-related potential correlates of task switching and switch costs. Psychophysiology, 42, 56–61. doi: 10.1111/j.1469-8986.2005.00262.x First citation in articleCrossrefGoogle Scholar

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M. & Koch, I. (2010). Control and interference in task switching – A review. Psychological Bulletin, 136, 849–874. doi: 10.1037/a0019842 First citation in articleCrossrefGoogle Scholar

  • Kimberg, D. Y., Aguirre, G. K. & D’Esposito, M. (2000). Modulation of task-related neural activity in task-switching: An fMRI study. Cognitive Brain Research, 10, 189–196. doi: 10.1016/S0926-6410(00)00016-1 First citation in articleCrossrefGoogle Scholar

  • Kopp, B., Langer, F., Howe, J. & Wessel, K. (2014). Age-related changes in neural recruitment for cognitive control. Brain and Cognition, 85, 209–219. doi: 10.1016/j.bandc.2013.12.008 First citation in articleCrossrefGoogle Scholar

  • Kray, J. (2006). Task-set switching under cue-based versus memory-based switching conditions in younger and older adults. Brain Research, 1105, 83–92. doi: 10.1016/j.brainres.2005.11.016 First citation in articleCrossrefGoogle Scholar

  • Kray, J. & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15, 126–147. doi: 10.1037/0882-7974.15.1.126 First citation in articleCrossrefGoogle Scholar

  • Lampit, A., Hallock, H. & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11, e1001756. doi: 10.1371/journal.pmed.1001756 First citation in articleCrossrefGoogle Scholar

  • Li, S.-C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J. & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23, 731–742. doi: 10.1037/a0014343 First citation in articleCrossrefGoogle Scholar

  • Logan, G. D. & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance, 29, 575–599. doi: 10.1037/0096-1523.29.3.575 First citation in articleCrossrefGoogle Scholar

  • Minear, M. & Shah, P. (2008). Training and transfer effects in task switching. Memory & Cognition, 36, 1470–1483. doi: 10.3758/MC.336.8.1470 First citation in articleCrossrefGoogle Scholar

  • Nicholson, R. A., Karayanidis, F., Bumak, E., Poboka, D. & Michie, P. T. (2006). ERPs dissociate the effects of switching task sets and task cues. Brain Research, 1095, 107–123. doi: 10.1016/j.brainres.2006.04.016 First citation in articleCrossrefGoogle Scholar

  • O’Brien, J. L., Edwards, J. D., Maxfield, N. D., Peronto, C. L., Williams, V. A. & Lister, J. J. (2013). Cognitive training and selective attention in the aging brain: An electrophysiological study. Clinical Neurophysiology, 124, 2198–2208. doi: 10.1016/j.clinph.2013.05.012 First citation in articleCrossrefGoogle Scholar

  • O’Connell, R. G., Balsters, J. H., Kilcullen, S. M., Campbell, W., Bokde, A. W., Lai, R., … Robertson, I. H. (2012). A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiology of Aging, 33, 2448–2461. doi: 0.1016/j.neurobiolaging.2011.12.021 First citation in articleCrossrefGoogle Scholar

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., … Ballard, C. G. (2010). Putting brain training to the test. Nature, 465, 775–778. doi: 10.1038/nature09042 First citation in articleCrossrefGoogle Scholar

  • Petersen, S. E. & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi: 10.1146/annurev-neuro-062111-150525 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019 First citation in articleCrossrefGoogle Scholar

  • Rebok, G. W., Carlson, M. C. & Langbaum, J. B. S. (2007). Training and maintaining memory abilities in healthy older adults: Traditional and novel approaches. The Journal of Gerontology, 62, 53–61. First citation in articleCrossrefGoogle Scholar

  • Reijnders, J., van Heugten, C. & van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mild cognitive impairment: A systematic review. Ageing Research Reviews, 12, 263–275. doi: 10.1016/j.arr.2012.07.003 First citation in articleCrossrefGoogle Scholar

  • Rogers, R. D. & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. doi: 10.1037/0894-4105.20.6.675 First citation in articleCrossrefGoogle Scholar

  • Rubin, O. & Merian, N. (2005). On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology, 31, 1477–1491. doi: 10.1037/0278-7393.31.6.1477 First citation in articleCrossrefGoogle Scholar

  • Schröger, E. & Wolff, C. (1998). Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cognitive Brain Research, 7, 71–87. doi: 10.1016/S0926-6410(98)00013-5 First citation in articleCrossrefGoogle Scholar

  • Shipstead, Z., Redick, T. S. & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628–654. doi: 10.1037/a0027473 First citation in articleCrossrefGoogle Scholar

  • Tennstedt, S. L. & Unverzagt, F. W. (2013). The ACTIVE study: Study overview and major findings. Journal of Aging and Health, 25, 3S–20S. doi: 10.1177/0898264313518133 First citation in articleCrossrefGoogle Scholar

  • Verleger, R., Jaskowski, P. & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19, 165–181. doi: 10.1027/0269-8803.19.3.165 First citation in articleLinkGoogle Scholar

  • von Bastian, C. C. & Eschen, A. (2016). Does working memory training have to be adaptive? Psychological Research, 80(2), 181–194. doi: 10.1007/s00426-015-0655-z First citation in articleCrossrefGoogle Scholar

  • von Bastian, C. C. & Oberaurer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi: 10.1016/j.jml.2013.02.002 First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). San Antonio, TX: Pearson. First citation in articleGoogle Scholar

  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292. doi: 10.1037/0033-2909.120.2.272 First citation in articleCrossrefGoogle Scholar

  • West, R. & Travers, S. (2008). Differential effects of aging on processes underlying task switching. Brain and Cognition, 68, 67–80. doi: 10.1016/j.bandc.2008.03.001 First citation in articleCrossrefGoogle Scholar

  • Whitson, L. R., Karayanidis, F. & Michie, P. T. (2012). Task practice differentially modulates task-switching performance across the adult lifespan. Acta Psychologica, 139, 124–136. doi: 10.1016/j.actpsy.2011.09.004 First citation in articleCrossrefGoogle Scholar