Skip to main content
Article

Distinguishing TBI Malingering and Fatigue Using Event-Related Potentials

Published Online:https://doi.org/10.1027/0269-8803/a000248

Abstract. Poorer-than-expected performance on cognitive-behavioral tasks may indicate malingering, or it could be an outcome of fatigue, resulting in false positives when suboptimal task performance is used to flag individuals feigning or exaggerating symptoms of traumatic brain injury (TBI). The primary goal of this study was to examine the P3 event-related potentials (ERP) and behavioral outcomes associated with TBI malingering and fatigue, in order to distinguish between them. A secondary goal was to determine if history of TBI (hTBI) is associated with differences in fatigue, ERPs, or performance on a short-term memory task. Participants completed the Mental Fatigue and Related Symptoms (SR-MF) questionnaire and were interviewed to assess TBI history, then they completed a computerized “old/new” (match-mismatch) task while ERPs were recorded, under three conditions: Normal, Malinger, and Fatigue. Participants reported mild fatigue at the end of study, with no difference between individuals reporting a history of TBI (n = 32) and healthy controls (n = 47). Fatigue was associated with prolonged P3 latency but was otherwise indistinguishable from Normal. In contrast, Malinger was clearly distinguished from Normal by significantly lower accuracy, longer reaction times, reduced P3 amplitude on Match trials, and a smaller old/new ERP effect. Individuals with a history of TBI reported clinical levels of fatigue at baseline but did not differ significantly from healthy controls on any behavioral or ERP measure. The results support the use of behavioral and ERP measures to identify malingering, without concern over confounding effects of mild subjective fatigue, including mild fatigue induced by testing.

References

  • Aaronson, L. S., Teel, C. S., Sassmeyer, V., Neuberger, G. B., Pallikkathayil, L., Pierce, J., … Wingate, A. (1999). Defining and measuring fatigue. Journal of Nursing Scholarship, 31, 45–50. https://doi.org/10.1111/j.1547-5069.1999.tb00420.x First citation in articleCrossrefGoogle Scholar

  • Agha, A., Rogers, B., Mylotte, D., Taleb, F., Tormey, W., Phillips, J., & Thompson, C. J. (2004). Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clinical Endocrinology, 60, 584–591. https://doi.org/10.1111/j.1365-2265.2004.02023.x First citation in articleCrossrefGoogle Scholar

  • Bay, E., & Xie, Y. (2009). Psychological and biological correlates of fatigue after mild-to-moderate traumatic brain injury. Western Journal of Nursing Research, 31, 731–747. https://doi.org/10.1177/0193945909334856 First citation in articleCrossrefGoogle Scholar

  • Bazarian, J. J., Wong, T., Harris, M., Leahey, N., Mookerjee, S., & Dombovy, M. (1999). Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Injury, 13, 173–189. https://doi.org/10.1080/026990599121692 First citation in articleCrossrefGoogle Scholar

  • Belmont, A., Agar, N., & Azouvi, P. (2009). Subjective fatigue, mental effort, and attention deficits after severe traumatic brain injury. Neurorehabilitation and Neural Repair, 23, 939–944. https://doi.org/10.1177/1545968309340327 First citation in articleCrossrefGoogle Scholar

  • Binder, L. M., Kelly, M. P., Villanueva, M. R., & Winslow, M. M. (2003). Motivation and neuropsychological test performance following mild head injury. Journal of Clinical and Experimental Neuropsychology, 25, 420–430. https://doi.org/10.1076/jcen.25.3.420.13806 First citation in articleCrossrefGoogle Scholar

  • Binder, L. M., & Willis, S. C. (1991). Assessment of motivation after financially compensable minor head trauma. Psychological Assessment, 3, 175–181. https://doi.org/10.1037/1040-3590.3.2.175 First citation in articleCrossrefGoogle Scholar

  • Bondanelli, M., Ambrosio, M. R., Zatelli, M. C., Marinis, L. D., & Uberti, E. C. (2005). Hypopituitarism after traumatic brain injury. European Journal of Endocrinology, 152, 679–691. https://doi.org/10.1530/eje.1.01895 First citation in articleCrossrefGoogle Scholar

  • Browndyke, J. N. (2013). Functional neuroanatomical bases of deceptive behavior and malingering. In D. A. CaroneS. S. BushEds., Mild traumatic brain injury: Symptom validity assessment in malingering (pp. 303–322). New York, NY: Springer. First citation in articleGoogle Scholar

  • Bushnik, T., Englander, J., & Katznelson, L. (2007). Fatigue after TBI: Association with neuroendocrine abnormalities. Brain Injury, 21, 559–566. https://doi.org/10.1080/02699050701426915 First citation in articleCrossrefGoogle Scholar

  • Bushnik, T., Englander, J., & Wright, J. (2008). Patterns of fatigue and its correlates over the first 2 years after traumatic brain injury. Journal of Head Trauma Rehabilitation, 23, 25–32. https://doi.org/10.1097/01.HTR.0000308718.88214.bb First citation in articleCrossrefGoogle Scholar

  • Cantor, J. B., Gordon, W., & Gumber, S. (2013). What is post TBI fatigue? NeuroRehabilitation, 32, 875–883. https://doi.org/10.3233/NRE-130912 First citation in articleCrossrefGoogle Scholar

  • Centers for Disease Control and Prevention. (2015). Traumatic brain injury. Retrieved from https://www.cdc.gov/TraumaticBrainInjury/ First citation in articleGoogle Scholar

  • Chaudhuri, A., & Behan, P. O. (2004). Fatigue in neurological disorders. The Lancet, 363, 978–987. https://doi.org/10.1016/S0140-6736(04)15794-2 First citation in articleCrossrefGoogle Scholar

  • Chervinskaya, A. B., Ommaya, A. K., DeJonge, M., Spector, J., Schwab, K., & Salazar, A. M. (1998). Motivation for traumatic brain injury rehabilitation questionnaire (MOT-Q): Reliability, factor analysis, and relationship to MMPI-2 variables. Archives of Clinical Neuropsychology, 13, 433–446. First citation in articleCrossrefGoogle Scholar

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 First citation in articleCrossrefGoogle Scholar

  • Elting, J. W., Maurits, N., van Weerden, T., Spikman, J., De Keyser, J., & van der Naalt, J. (2008). Diagnostic properties of P300 analysis techniques in head injury patients: Comparison with imaging data. Brain Injury, 22, 870–881. https://doi.org/10.1080/02699050802403581 First citation in articleCrossrefGoogle Scholar

  • Fabiano, R. J., & Daugherty, J. (1999). Rehabilitation considerations following mild traumatic brain injury. Journal of Rehabilitation, 64, 9–14. First citation in articleGoogle Scholar

  • Gosselin, N., Bottari, C., Chen, J. K., Huntgeburth, S. C., De Beaumont, L., Petrides, M., … Ptito, A. (2012). Evaluating the cognitive consequences of mild traumatic brain injury and concussion by using electrophysiology. Neurosurgical Focus, 33, E7. https://doi.org/10.3171/2012.10.FOCUS12253 First citation in articleCrossrefGoogle Scholar

  • Guo, Z., Chen, R., Zhang, K., Pan, Y., & Wu, J. (2016). The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: An event-related potential based study. PLoS One, 11, e0163360. https://doi.org/10.1371/journal.pone.0163360 First citation in articleCrossrefGoogle Scholar

  • Johansson, B., Berglund, P., & Rӧnnbӓck, L. (2009). Mental fatigue and impaired information processing after mild and moderate traumatic brain injury. Brain Injury, 23, 1027–1040. https://doi.org/10.3109/02699050903421099 First citation in articleCrossrefGoogle Scholar

  • Johansson, B., Starmark, A., Berglund, P., Rӧdholm, M., & Rӧnnbӓck, L. (2010). A self-assessment questionnaire for mental fatigue and related symptoms after neurological disorders and injuries. Brain Injury, 24, 2–12. https://doi.org/10.3109/02699050903452961 First citation in articleCrossrefGoogle Scholar

  • Johnson, R. (1995). Event-related potential insights into the neurobiology of memory systems. In F. BollerJ. GrafmanEds., Handbook of neuropsychology (Vol. 10, pp. 135–163). New York, NY: Elsevier. First citation in articleGoogle Scholar

  • Johnson, S. K., Lange, G., DeLuca, J., Korn, L. R., & Natelson, B. (1997). The effects of fatigue on neuropsychological performance in patients with chronic fatigue syndrome, multiple sclerosis, and depression. Applied Neuropsychology, 4, 145–153. https://doi.org/10.1207/s15324826an0403_1 First citation in articleCrossrefGoogle Scholar

  • Karis, D., Fabiani, M., & Donchin, E. (1984). “P300” and memory: Individual differences in the von Restorff effect. Cognitive Psychology, 16, 177–216. https://doi.org/10.1016/0010-0285(84)90007-0 First citation in articleCrossrefGoogle Scholar

  • Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & Deluca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Injury, 23, 420–432. https://doi.org/10.1080/02699050902788519 First citation in articleCrossrefGoogle Scholar

  • Kraus, J. F., & Chu, L. D. (2005). Epidemiology. In J. M. SilverT. W. McAllisterS. C. YudofskyEds., Textbook of traumatic brain injury (pp. 3–26). Arlington, VA: American Psychiatric Publishing. First citation in articleGoogle Scholar

  • Langlois, J., Rutland-Brown, W., & Wald, M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. The Journal of Head Trauma Rehabilitation, 21, 375–378. https://doi.org/10.1097/00001199-200609000-00001 First citation in articleCrossrefGoogle Scholar

  • Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213 First citation in articleCrossrefGoogle Scholar

  • Luck, S. J. (2014). An introduction to the event-related potential technique. London, UK: MIT Press. First citation in articleGoogle Scholar

  • Martens, M., Donders, J., & Millis, S. R. (2001). Evaluation of invalid response sets after traumatic head injury. Journal of Forensic Neuropsychology, 2, 1–18. First citation in articleCrossrefGoogle Scholar

  • Masson, F., Maurette, P., Salmi, L. R., Dartigues, J. F., Vecsey, J., Destaillats, J. M., & Erny, P. (1996). Prevalence of impairments 5 years after a head injury, and their relationship with disabilities and outcome. Brain Injury, 10, 487–498. https://doi.org/10.1080/026990596124205 First citation in articleCrossrefGoogle Scholar

  • Millis, S. (1994). Assessment of motivation and memory with the recognition memory test after financially compensable mild head injury. Journal of Clinical Psychology, 50, 601–605. https://doi.org/10.1002/1097-4679(199407)50:4<601::AID-JCLP2270500417>3.0.CO;2-9 First citation in articleCrossrefGoogle Scholar

  • Mittenberg, W., Patton, C., Canyock, E. M., & Condit, D. C. (2002). Base rates of malingering and symptom exaggeration. Journal of Clinical and Experimental Neuropsychology, 24, 1094–1102. https://doi.org/10.1076/jcen.24.8.1094.8379 First citation in articleCrossrefGoogle Scholar

  • National Institute of Child Health and Human Development. (2013). How do healthcare providers diagnose traumatic brain injury (TBI)?. Retrieved from https://www.nichd.nih.gov/health/topics/tbi/conditioninfo/diagnose First citation in articleGoogle Scholar

  • Nies, K. J., & Sweet, J. J. (1994). Neuropsychological assessment and malingering: A critical review of the past and present strategies. Archives of Clinical Neuropsychology, 9, 501–552. https://doi.org/10.1016/0887-6177(94)90041-8 First citation in articleCrossrefGoogle Scholar

  • Oliver, J. H., Ponsford, J. L., & Curran, C. (1996). Outcome following traumatic brain injury: A comparison between 2 and 5 years after injury. Brain Injury, 10, 841–848. https://doi.org/10.1080/026990596123945 First citation in articleCrossrefGoogle Scholar

  • Ouellet, M. C., & Morin, C. M. (2006). Fatigue following traumatic brain injury: Frequency, characteristics, and associated factors. Rehabilitation Psychology, 51, 140–149. https://doi.org/10.1037/0090-5550.51.2.140 First citation in articleCrossrefGoogle Scholar

  • Paller, K.A., & Kutas, M. (1992). Brain potentials during memory retrieval provide neurophysiological support for the distinction between conscious recollection and priming. Journal of Cognitive Neuroscience, 4, 375–391. https://doi.org/10.1162/jocn.1992.4.4.375 First citation in articleCrossrefGoogle Scholar

  • Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41, 103–146. https://doi.org/10.1016/0301-0511(95)05130-9 First citation in articleCrossrefGoogle Scholar

  • Ponsford, J., Willmott, C., Rothwell, A., Camerson, P., Kelly, A., Nelms, R., Curran, C., & NG, K. (2000). Factors influencing outcome following mild traumatic brain injury in adults. Journal of International Neuropsychological Society, 6, 568–579. https://doi.org/10.1017/S1355617700655066 First citation in articleCrossrefGoogle Scholar

  • Robinson, L. K., & McFadden, S. L. (2016, May). Perceived self-control, coping, and sensation seeking following brain trauma. Paper presented at the 88th Annual Midwestern Psychological Association, Chicago, IL. First citation in articleGoogle Scholar

  • Rosenfeld, J. P., Ellwanger, J. W., Nolan, K., Wu, S., Bermann, R. G., & Sweet, J. (1999). P300 scalp amplitude distribution as an index of deception in a simulated cognitive deficit model. International Journal of Psychophysiology, 33, 3–19. https://doi.org/10.1016/S0167-8760(99)00021-5 First citation in articleCrossrefGoogle Scholar

  • Rosenfeld, J. P., Reinhart, A. M., Bhatt, M., Ellwanger, J., Gora, K., Sekera, M., & Sweet, J. (1998). P300 correlates of simulated malingered amnesia in a matching-to-sample task: Topographic analyses of deception versus truthtelling responses. International Journal of Psychophysiology, 28, 233–247. https://doi.org/10.1016/S0167-8760(97)00084-6 First citation in articleCrossrefGoogle Scholar

  • Rugg, M.D., Cowan, C.P., Nagy, M.E., Milner, A.D., Jacobson, I., & Brooks, D. N. (1988). Event related potentials from closed head injury patients in an auditory “oddball” task: Evidence of dysfunction in stimulus categorisation. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 691–698. https://doi.org/10.1136/jnnp.51.5.691 First citation in articleCrossrefGoogle Scholar

  • Schroeder, R. W., Twumasi-Ankrah, P., Baade, L. E., & Marshall, P. S. (2012). Reliable digit span: A systematic review and cross-validation study. Assessment, 19, 21–30. https://doi.org/10.1177/1073191111428764 First citation in articleCrossrefGoogle Scholar

  • Smith, M.E. (1993). Neurophysiological manifestations of recollective experience during recognition memory judgments. Journal of Cognitive Neuroscience, 5, 1–13. https://doi.org/10.1162/jocn.1993.5.1.1 First citation in articleCrossrefGoogle Scholar

  • Smith, M. E., & Halgren, E. (1989). Dissociation of recognition memory components following temporal lobe lesions. Journal of Experimental Psychology: Learning, Memory & Cognition, 15, 50–60. https://doi.org/10.1037/0278-7393.15.1.50 First citation in articleCrossrefGoogle Scholar

  • Solbakk, A.-K., Reinvang, I., & Andersson, S. (2002). Assessment of P3a and P3b after moderate to severe brain injury. Clinical Electroencephalography, 33, 102–110. https://doi.org/10.1177/155005940203300306 First citation in articleCrossrefGoogle Scholar

  • Strauss, E., Spellacy, F., Hunter, M., & Berry, T. (1994). Assessing believable deficits on measures of attention and information processing capacity. Archives of Clinical Neuropsychology, 9, 483–490. https://doi.org/10.1016/0887-6177(94)90039-6 First citation in articleCrossrefGoogle Scholar

  • Suhr, J. A. (2003). Neuropsychological impairment in fibromyalgia: Relation to depression, fatigue, and pain. Journal of Psychosomatic Research, 55, 321–329. https://doi.org/10.1016/S0022-3999(02)00628-1 First citation in articleCrossrefGoogle Scholar

  • Tardif, H. P., Barry, R. J., Fox, A. M., & Johnstone, S. J. (2000). Detection of feigned recognition memory impairment using the old/new effect of the event-related potential. International Journal of Psychophysiology, 36, 1–9. https://doi.org/10.1016/S0167-8760(00)00083-0 First citation in articleCrossrefGoogle Scholar

  • Tardif, H. P., Barry, R. J., & Johnstone, S. J. (2002). Event-related potentials reveal processing differences in honest vs. malingered memory performance. International Journal of Psychophysiology, 46, 147–158. https://doi.org/10.1016/S0167-8760(02)00090-9 First citation in articleCrossrefGoogle Scholar

  • Vagnini, V. L., Berry, D. T. R., Clark, J. A., & Jiang, Y. (2008). New measures to detect malingered neurocognitive deficit: Applying reaction time and event-related potentials. Journal of Clinical and Experimental Neuropsychology, 30, 766–776. https://doi.org/10.1080/13803390701754746 First citation in articleCrossrefGoogle Scholar

  • Van Hoof, J. C., Sargeant, E., Foster, J. K., & Schmand, B. A. (2009). Identifying deliberate attempts to fake memory impairment through the combined use of reaction time and event-related potential measures. International Journal of Psychophysiology, 73, 246–256. https://doi.org/10.1016/j.ijpsycho.2009.04.002 First citation in articleCrossrefGoogle Scholar

  • Van Zomeren, A., & Van den Burg, W. (1985). Residual complaints of patients two years after severe head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 48, 21–28. https://doi.org/10.1136/jnnp.48.1.21 First citation in articleCrossrefGoogle Scholar

  • Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72, 2031–2046. https://doi.org/10.3758/BF03196680 First citation in articleCrossrefGoogle Scholar

  • Woods, D. L., Herron, T. J., Yund, E. W., Hink, R. F., Kishiyama, M. M., & Reed, B. (2011). Computerized analysis of error patterns in digit span recall. Journal of Clinical and Experimental Neuropsychology, 33, 721–734. https://doi.org/10.1080/13803395.2010.550602 First citation in articleCrossrefGoogle Scholar