Skip to main content

The Influence of Slow-Paced Breathing on Executive Function

Published Online:https://doi.org/10.1027/0269-8803/a000279

Abstract. The aim of this experiment was to test the immediate effects of slow-paced breathing on executive function. Slow-paced breathing is suggested to increase cardiac vagal activity, and the neurovisceral integration model predicts that higher cardiac vagal activity leads to better executive functioning. In total, 78 participants (41 men, 37 women; Mage = 23.22 years) took part in two counterbalanced experimental conditions: a 3 × 5 min slow-paced breathing condition and a television viewing control condition. After each condition, heart rate variability was measured and participants performed three executive function tasks: the color-word match Stroop (inhibition), the automated operation span task (working memory), and the modified card sorting task (cognitive flexibility). Results showed that performance on executive function tasks was better after slow-paced breathing compared to control, with higher scores observed for Stroop interference accuracy, automated operation span score, and perseverative errors, but not Stroop interference reaction times. This difference in executive function between experimental conditions was not mediated by cardiac vagal activity. Therefore, findings only partially align with predictions of the neurovisceral integration model. Slow-paced breathing appears a promising technique to improve immediate executive function performance. Further studies are recommended that address possible alternative underlying mechanisms and long-term effects.

References

  • Alba, G., Vila, J., Rey, B., Montoya, P., & Munoz, M. A. (2019). The relationship between heart rate variability and electroencephalography functional connectivity variability is associated with cognitive flexibility. Frontiers in Human Neuroscience, 13, Article 64. https://doi.org/10.3389/fnhum.2019.00064 First citation in articleCrossrefGoogle Scholar

  • Albinet, C. T., Abou-Dest, A., Andre, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69–77. https://doi.org/10.1016/j.biopsycho.2016.01.010 First citation in articleCrossrefGoogle Scholar

  • Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109, 617–624. https://doi.org/10.1007/s00421-010-1393-y First citation in articleCrossrefGoogle Scholar

  • Allen, B., & Friedman, B. H. (2012). Positive emotion reduces dyspnea during slow paced breathing. Psychophysiology, 49(5) 690–696. https://doi.org/10.1111/j.1469-8986.2011.01344.x First citation in articleCrossrefGoogle Scholar

  • Angelone, A., & Coulter, N. A. Jr. (1964). Respiratory sinus arrhythemia: A frequency dependent phenomenon. Journal of Applied Physiology, 19(3) 479–482. https://doi.org/10.1152/jappl.1964.19.3.479 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8(4) 485–493. https://doi.org/10.1037/0894-4105.8.4.485 First citation in articleCrossrefGoogle Scholar

  • Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6) 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x First citation in articleCrossrefGoogle Scholar

  • Biskamp, J., Bartos, M., & Sauer, J. F. (2017). Organization of prefrontal network activity by respiration-related oscillations. Scientific Reports, 7, Article 45508. https://doi.org/10.1038/srep45508 First citation in articleCrossrefGoogle Scholar

  • Bonomini, M. P., Calvo, M. V., Morcillo, A. D., Segovia, F., Vicente, J. M. F., & Fernandez-Jover, E. (2020). The effect of breath pacing on task switching and working memory. International Journal of Neural Systems, 30(6) Article 2050028. https://doi.org/10.1142/S0129065720500288 First citation in articleCrossrefGoogle Scholar

  • Bordoni, B., Purgol, S., Bizzarri, A., Modica, M., & Morabito, B. (2018). The influence of breathing on the central nervous system. Cureus, 10(6) Article e2724. https://doi.org/10.7759/cureus.2724 First citation in articleGoogle Scholar

  • Brodal, P. (2016). The central nervous system – Structure and function (5th ed.). Oxford University Press. First citation in articleGoogle Scholar

  • Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2004). Modified card sorting test: Normative data. Journal of Clinical and Experimental Neuropsychology, 26(2) 246–250. https://doi.org/10.1076/jcen.26.2.246.28087 First citation in articleCrossrefGoogle Scholar

  • Colzato, L. S., Jongkees, B. J., de Wit, M., van der Molen, M. J. W., & Steenbergen, L. (2018). Variable heart rate and a flexible mind: Higher resting-state heart rate variability predicts better task-switching. Cognitive, Affective, & Behavioral Neuroscience, 18, 730–738. https://doi.org/10.3758/s13415-018-0600-x First citation in articleCrossrefGoogle Scholar

  • Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8) 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB First citation in articleCrossrefGoogle Scholar

  • Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11) 2037–2078. https://doi.org/10.1016/j.neuropsychologia.2006.02.006 First citation in articleCrossrefGoogle Scholar

  • De Couck, M., Caers, R., Musch, L., Fliegauf, J., Giangreco, A., & Gidron, Y. (2019). How breathing can help you make better decisions: Two studies on the effects of breathing patterns on heart rate variability and decision-making in business cases. International Journal of Psychophysiology, 139, 1–9. https://doi.org/10.1016/j.ijpsycho.2019.02.011 First citation in articleCrossrefGoogle Scholar

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750 First citation in articleCrossrefGoogle Scholar

  • Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34–48. https://doi.org/10.1016/j.dcn.2015.11.005 First citation in articleCrossrefGoogle Scholar

  • Dresler, T., Meriau, K., Heekeren, H. R., & Van Der Meer, E. (2009). Emotional Stroop task: Effect of word arousal and subject anxiety on emotional interference. Psychological Research, 73(3) 364–371. https://doi.org/10.1007/s00426-008-0154-6 First citation in articleCrossrefGoogle Scholar

  • Egizio, V. B., Eddy, M., Robinson, M., & Jennings, J. R. (2011). Efficient and cost-effective estimation of the influence of respiratory variables on respiratory sinus arrhythmia. Psychophysiology, 48(4) 488–494. https://doi.org/10.1111/j.1469-8986.2010.01086.x First citation in articleCrossrefGoogle Scholar

  • Fagevik Olsen, M., Lannefors, L., & Westerdahl, E. (2015). Positive expiratory pressure – Common clinical applications and physiological effects. Respiratory Medicine, 109(3) 297–307. https://doi.org/10.1016/j.rmed.2014.11.003 First citation in articleCrossrefGoogle Scholar

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 First citation in articleCrossrefGoogle Scholar

  • Folkard, S. (1990). Circadian performance rhythms: Some practical and theoretical implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 327(1241) 543–553. First citation in articleGoogle Scholar

  • Gerritsen, R. J. S., & Band, G. P. H. (2018). Breath of Life: The respiratory vagal stimulation model of contemplative activity. Frontiers in Human Neuroscience, 12, Article 397. https://doi.org/10.3389/fnhum.2018.00397 First citation in articleCrossrefGoogle Scholar

  • Gothe, N., Pontifex, M. B., Hillman, C., & McAuley, E. (2013). The acute effects of yoga on executive function. Journal of Physical Activity and Health, 10(4) 488–495. First citation in articleCrossrefGoogle Scholar

  • Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: The need for respiratory control. Psychophysiology, 28(2) 201–216. https://doi.org/10.1111/j.1469-8986.1991.tb00412.x First citation in articleCrossrefGoogle Scholar

  • Grossman, P., & Kollai, M. (1993). Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: Within- and between-individual relations. Psychophysiology, 30(5) 486–495. First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H., Sollers, J. J., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. European Journal of Applied Physiology, 93, 263–272. https://doi.org/10.1007/s00421-004-1208-0 First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48, 263–274. https://doi.org/10.1016/S0167-8760(03)00073-4 First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2009). Relationship between heart rate variability and cognitive function during threat of shock. Anxiety, Stress, and Coping, 22(1) 77–89. https://doi.org/10.1080/10615800802272251 First citation in articleCrossrefGoogle Scholar

  • Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis, Guilford Press. First citation in articleGoogle Scholar

  • Heck, D. H., Kozma, R., & Kay, L. M. (2019). The rhythm of memory: How breathing shapes memory function. Journal of Neurophysiology, 122(2) 563–571. https://doi.org/10.1152/jn.00200.2019 First citation in articleCrossrefGoogle Scholar

  • Hill, L. K., Siebenbrock, A., Sollers, J. J., & Thayer, J. F. (2009). Are all measures created equal? Heart rate variability and respiration. Biomedical Sciences Instrumentation, 45, 71–76. First citation in articleGoogle Scholar

  • Hoffmann, S., Jendreizik, L., Ettinger, U., & Laborde, S. (2019). Keeping the pace: the effect of slow-paced breathing on error monitoring. International Journal of Psychophysiology, 146, 217–224. https://doi.org/10.1016/j.ijpsycho.2019.10.001 First citation in articleCrossrefGoogle Scholar

  • Hovland, A., Pallesen, S., Hammar, Å., Hansen, A. L., Thayer, J. F., Tarvainen, M. P., & Nordhus, I. H. (2012). The relationships among heart rate variability, executive functions, and clinical variables in patients with panic disorder. International Journal of Psychophysiology, 86, 269–275. https://doi.org/10.1016/j.ijpsycho.2012.10.004 First citation in articleCrossrefGoogle Scholar

  • Hsu, S. M., Tseng, C. H., Hsieh, C. H., & Hsieh, C. W. (2020). Slow-paced inspiration regularizes alpha phase dynamics in the human brain. Journal of Neurophysiology, 123(1) 289–299. https://doi.org/10.1152/jn.00624.2019 First citation in articleCrossrefGoogle Scholar

  • Johnsen, B. H., Thayer, J. F., Laberg, J. C., Wormnes, B., Raadal, M., Skaret, E., Kvale, G., & Berg, E. (2003). Attentional and physiological characteristics of patients with dental anxiety. Journal of Anxiety Disorders, 17(1) 75–87. https://doi.org/10.1016/S0887-6185(02)00178-0 First citation in articleCrossrefGoogle Scholar

  • Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1) 47–70. https://doi.org/10.1037/0096-3445.132.1.47 First citation in articleCrossrefGoogle Scholar

  • Kromenacker, B. W., Sanova, A. A., Marcus, F. I., Allen, J. J. B., & Lane, R. D. (2018). Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosomatic Medicine, 80(6) 581–587. https://doi.org/10.1097/psy.0000000000000603 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Allen, M. S., Gohring, N., & Dosseville, F. (2017). The effect of slow-paced breathing on stress management in adolescents with intellectual disability. Journal of Intellectual Disability Research, 61(6) 560–567. https://doi.org/10.1111/jir.12350 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Furley, P., & Schempp, C. (2015). The relationship between working memory, reinvestment, and heart rate variability. Physiology & Behavior, 139, 430–436. https://doi.org/10.1016/j.physbeh.2014.11.036 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Hosang, T., Mosley, E., & Dosseville, F. (2019). Influence of a 30-day slow paced breathing intervention compared to social media use on subjective sleep quality and cardiac vagal activity. Journal of Clinical Medicine, 8(2) 193–205. https://doi.org/10.3390/jcm8020193 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Lentes, T., Hosang, T. J., Borges, U., Mosley, E., & Dosseville, F. (2019). Influence of slow-paced breathing on inhibition after physical exertion. Frontiers in Psychology, 10, Article 1923. https://doi.org/10.3389/fpsyg.2019.01923 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Mosley, E., & Mertgen, A. (2018). A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon, 4(12) Article e01002. https://doi.org/10.1016/j.heliyon.2018.e01002 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Physiology, 8, Article 213. https://doi.org/10.3389/fpsyg.2017.00213 First citation in articleGoogle Scholar

  • Laborde, S., Mosley, E., & Ueberholz, L. (2018). Enhancing cardiac vagal activity: Factors of interest for sport psychology. Progress in Brain Research, 240, 71–92. https://doi.org/10.1016/bs.pbr.2018.09.002 First citation in articleCrossrefGoogle Scholar

  • Larsen, P. D., Tzeng, Y. C., Sin, P. Y., & Galletly, D. C. (2010). Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respiratory Physiology & Neurobiology, 174(1–2), 111–118. https://doi.org/10.1016/j.resp.2010.04.021 First citation in articleCrossrefGoogle Scholar

  • Lehrer, P. M. (2003). Applied psychophysiology: Beyond the boundaries of biofeedback (mending a wall, a brief history of our field, and applications to control of the muscles and cardiorespiratory systems). Applied Psychophysiology & Biofeedback, 28(4) 291–304. https://doi.org/10.1023/a:1027330909265 First citation in articleCrossrefGoogle Scholar

  • Lehrer, P. M. (2013). How does heart rate variability biofeedback work? Resonance, the baroreflex, and other mechanisms. Biofeedback, 41(1) 26–31. https://doi.org/10.5298/1081-5937-41.1.02 First citation in articleCrossrefGoogle Scholar

  • Lehrer, P. M. (2018). Heart rate variability biofeedback and other psychophysiological procedures as important elements in psychotherapy. International Journal of Psychophysiology, 131, 89–95. https://doi.org/10.1016/j.ijpsycho.2017.09.012 First citation in articleCrossrefGoogle Scholar

  • Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work? Frontiers in Psychology, 5, Article 756. https://doi.org/10.3389/fpsyg.2014.00756 First citation in articleCrossrefGoogle Scholar

  • Lewis, G. F., Hourani, L., Tueller, S., Kizakevich, P., Bryant, S., Weimer, B., & Strange, L. (2015). Relaxation training assisted by heart rate variability biofeedback: Implication for a military predeployment stress inoculation protocol. Psychophysiology, 52(9) 1167–1174. https://doi.org/10.1111/psyp.12455 First citation in articleCrossrefGoogle Scholar

  • Lorig, T. (2011). The respiratory system. In J. T. CacioppoL. G. TassinaryG. G. BerntsonEds., The handbook of psychophysiology (pp. 231–244). Cambridge University Press. First citation in articleGoogle Scholar

  • Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3) 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868 First citation in articleCrossrefGoogle Scholar

  • Maric, V., Ramanathan, D., & Mishra, J. (2020). Respiratory regulation and interactions with neuro-cognitive circuitry. Neuroscience & Biobehavioral Reviews, 112, 95–106. https://doi.org/10.1016/j.neubiorev.2020.02.001 First citation in articleCrossrefGoogle Scholar

  • Mather, M., & Thayer, J. F. (2018). How heart rate variability affects emotion regulation brain networks. Current Opinion in Behavioral Sciences, 19, 98–104. https://doi.org/10.1016/j.cobeha.2017.12.017 First citation in articleCrossrefGoogle Scholar

  • Mathewson, K. J., Jetha, M. K., Goldberg, J. O., & Schmidt, L. A. (2012). Autonomic regulation predicts performance on Wisconsin Card Sorting Test (WCST) in adults with schizophrenia. Biological Psychology, 91, 389–399. https://doi.org/10.1016/j.biopsycho.2012.09.002 First citation in articleCrossrefGoogle Scholar

  • Mayer, A. F., Karloh, M., Dos Santos, K., de Araujo, C. L. P., & Gulart, A. A. (2018). Effects of acute use of pursed-lips breathing during exercise in patients with COPD: A systematic review and meta-analysis. Physiotherapy, 104(1) 9–17. https://doi.org/10.1016/j.physio.2017.08.007 First citation in articleCrossrefGoogle Scholar

  • McDowd, J. M., Oseas-Kreger, D. M., & Filion, D. L. (1995). Inhibitory processes in cognition and aging. In F. N. DempsterC. J. BrainerdEds., Interference and inhibition in cognition (pp. 363–400). Academic Press. First citation in articleCrossrefGoogle Scholar

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1) 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167 First citation in articleCrossrefGoogle Scholar

  • Millisecond Software. (2016). Inquisit 5 [Computer software]. https://www.millisecond.com First citation in articleCrossrefGoogle Scholar

  • Milner, B. (1982). Some cognitive effects of frontal-lobe lesions in man. Philosophical Transactions of the Royal Society B: Biological Sciences, 298(1089) 211–226. https://doi.org/10.1098/rstb.1982.0083 First citation in articleGoogle Scholar

  • Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1) 8–14. https://doi.org/10.1177/0963721411429458 First citation in articleCrossrefGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1) 49–100. https://doi.org/10.1006/cogp.1999.0734 First citation in articleCrossrefGoogle Scholar

  • Morandi, G. N., Lin, S. H., Lin, C. W., Yeh, T. L., Chu, C. L., Lee, I. H., Chi, M. H., Chen, K. C., Chen, P. S., & Yang, Y. K. (2019). Heart rate variability is associated with memory in females. Applied Psychophysiology & Biofeedback, 44(2) 117–122. https://doi.org/10.1007/s10484-018-9425-1 First citation in articleCrossrefGoogle Scholar

  • Mosley, E., Laborde, S., & Kavanagh, E. (2018). Coping related variables, cardiac vagal activity and working memory performance under pressure. Acta Psychologica, 191, 179–189. https://doi.org/10.1016/j.actpsy.2018.09.007 First citation in articleCrossrefGoogle Scholar

  • Nakamura, N. H., Fukunaga, M., & Oku, Y. (2018). Respiratory modulation of cognitive performance during the retrieval process. PLoS One, 13(9) Article e0204021. https://doi.org/10.1371/journal.pone.0204021 First citation in articleCrossrefGoogle Scholar

  • Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12(4) 313–324. First citation in articleCrossrefGoogle Scholar

  • Nguyen, L., Murphy, K., & Andrews, G. (2019). Immediate and long-term efficacy of executive functions cognitive training in older adults: A systematic review and meta-analysis. Psychological Bulletin, 145(7) 698–733. https://doi.org/10.1037/bul0000196 First citation in articleCrossrefGoogle Scholar

  • Noble, D. J., Goolsby, W. N., Garraway, S. M., Martin, K. K., & Hochman, S. (2017). Slow breathing can be operantly conditioned in the rat and may reduce sensitivity to experimental stressors. Frontiers in Physiology, 8, Article 854. https://doi.org/10.3389/fphys.2017.00854 First citation in articleCrossrefGoogle Scholar

  • Noble, D. J., & Hochman, S. (2019). Hypothesis: Pulmonary afferent activity patterns during slow, deep breathing contribute to the neural induction of physiological relaxation. Frontiers in Physiology, 10, Article 1176. https://doi.org/10.3389/fphys.2019.01176 First citation in articleCrossrefGoogle Scholar

  • Perl, O., Ravia, A., Rubinson, M., Eisen, A., Soroka, T., Mor, N., Secundo, L., & Sobel, N. (2019). Human non-olfactory cognition phase-locked with inhalation. Nature Human Behaviour, 3(5) 501–512. https://doi.org/10.1038/s41562-019-0556-z First citation in articleCrossrefGoogle Scholar

  • Prinsloo, G. E., Rauch, H. G., Lambert, M. I., Muench, F., Noakes, T. D., & Derman, W. E. (2011). The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Applied Cognitive Psychology, 25, 792–801. https://doi.org/10.1002/acp.1750 First citation in articleCrossrefGoogle Scholar

  • Pu, J., Schmeichel, B. J., & Demaree, H. A. (2010). Cardiac vagal control predicts spontaneous regulation of negative emotional expression and subsequent cognitive performance. Biological Psychology, 84, 531–540. https://doi.org/10.1016/j.biopsycho.2009.07.006 First citation in articleCrossrefGoogle Scholar

  • Putman, P., & Berling, S. (2011). Cortisol acutely reduces selective attention for erotic words in healthy young men. Psychoneuroendocrinology, 36(9) 1407–1417. https://doi.org/10.1016/j.psyneuen.2011.03.015 First citation in articleCrossrefGoogle Scholar

  • Quintana, D. S., & Heathers, J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioral research. Frontiers in Physiology, 5, Article 805. https://doi.org/10.3389/fpsyg.2014.00805 First citation in articleGoogle Scholar

  • Reyes del Paso, G. A., Ladron, Munoz., de Guevara, C., & Montoro, C. I. (2015). Breath-holding during exhalation as a simple manipulation to reduce pain perception. Pain Medicine, 16(9) 1835–1841. https://doi.org/10.1111/pme.12764 First citation in articleCrossrefGoogle Scholar

  • Ritz, T., Dahme, B., Dubois, A. B., Folgering, H., Fritz, G. K., Harver, A., Kotses, H., Lehrer, P. M., Ring, C., Steptoe, A., & Van de Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39(5) 546–567. https://doi.org/10.1017.S0048577202010715 First citation in articleCrossrefGoogle Scholar

  • Russell, M. E. B., Scott, A. B., Boggero, I. A., & Carlson, C. R. (2017). Inclusion of a rest period in diaphragmatic breathing increases high frequency heart rate variability: Implications for behavioral therapy. Psychophysiology, 54(3) 358–365. https://doi.org/10.1111/psyp.12791 First citation in articleCrossrefGoogle Scholar

  • Sebastiani, L., Di Gruttola, F., Incognito, O., Menardo, E., & Santarcangelo, E. L. (2019). The higher the basal vagal tone the better the motor imagery ability. Archives Italiennes De Biologie, 157(1) 3–14. https://doi.org/10.12871/00039829201911 First citation in articleCrossrefGoogle Scholar

  • Shannahoff-Khalsa, D. S., Boyle, M. R., & Buebel, M. E. (1991). The effects of unilateral forced nostril breathing on cognition. International Journal of Neuroscience, 57(3–4), 239–249. https://doi.org/10.3109/00207459109150697 First citation in articleCrossrefGoogle Scholar

  • Sherwood, L. (2006). Fundamentals of physiology: A human perspective (3rd ed.). Brooks/Cole. First citation in articleGoogle Scholar

  • Skow, R. J., Day, T. A., Fuller, J. E., Bruce, C. D., & Steinback, C. D. (2015). The ins and outs of breath holding: Simple demonstrations of complex respiratory physiology. Advances in Physiology Education, 39(3) 223–231. https://doi.org/10.1152/advan.00030.2015 First citation in articleCrossrefGoogle Scholar

  • Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274–296. https://doi.org/10.1016/j.neubiorev.2017.02.003 First citation in articleCrossrefGoogle Scholar

  • Strauss-Blasche, G., Moser, M., Voica, M., McLeod, D. R., Klammer, N., & Marktl, W. (2000). Relative timing of inspiration and expiration affects respiratory sinus arrhythmia. Clinical and Experimental Pharmacology and Physiology, 27(8) 601–606. First citation in articleCrossrefGoogle Scholar

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6) 643–662. https://doi.org/10.1037/h0054651 First citation in articleCrossrefGoogle Scholar

  • Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38(4) 388–402. First citation in articleCrossrefGoogle Scholar

  • Subramanya, P., & Telles, S. (2015). Performance in the Stroop task and simultaneously recorded heart rate variability before and after meditation, supine rest and no-intervention. International Journal of Brain and Cognitive Sciences, 4, 8–14. https://doi.org/10.5923/j.ijbcs.20150401.03 First citation in articleGoogle Scholar

  • Szulczewski, M. T., & Rynkiewicz, A. (2018). The effects of breathing at a frequency of 0.1 Hz on affective state, the cardiovascular system, and adequacy of ventilation. Psychophysiology, 55(12) Article e13221. https://doi.org/10.1111/psyp.13221 First citation in articleCrossrefGoogle Scholar

  • Tabachnick, B., & Fidell, L. (2012). Using multivariate statistics (6th ed.). Pearson. First citation in articleGoogle Scholar

  • Takacs, Z. K., & Kassai, R. (2019). The efficacy of different interventions to foster children’s executive function skills: A series of meta-analyses. Psychological Bulletin, 145(7) 653–697. https://doi.org/10.1037/bul0000195 First citation in articleCrossrefGoogle Scholar

  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods Programs Biomedical, 113(1) 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36, 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. https://doi.org/10.1007/s12160-009-9101-z First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33, 81–88. https://doi.org/10.1016/j.neubiorev.2008.08.004 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Loerbroks, A., & Sternberg, E. M. (2011). Inflammation and cardiorespiratory control: The role of the vagus nerve. Respiratory Physiology & Neurobiology, 178, 387–394. https://doi.org/10.1016/j.resp.2011.05.016 First citation in articleCrossrefGoogle Scholar

  • Tort, A. B. L., Brankack, J., & Draguhn, A. (2018). Respiration-entrained brain rhythms are global but often overlooked. Trends in Neuroscience, 41(4) 186–197. https://doi.org/10.1016/j.tins.2018.01.007 First citation in articleCrossrefGoogle Scholar

  • Tsai, H. J., Kuo, T. B., Lee, G. S., & Yang, C. C. (2015). Efficacy of paced breathing for insomnia: Enhances vagal activity and improves sleep quality. Psychophysiology, 52(3) 388–396. https://doi.org/10.1111/psyp.12333 First citation in articleCrossrefGoogle Scholar

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory & Language, 28, 127–154. First citation in articleCrossrefGoogle Scholar

  • Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505. https://doi.org/10.3758/BF03192720 First citation in articleCrossrefGoogle Scholar

  • Van Diest, I., Verstappen, K., Aubert, A. E., Widjaja, D., Vansteenwegen, D., & Vlemincx, E. (2014). Inhalation/exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation. Applied Psychophysiology & Biofeedback, 39(3–4), 171–180. https://doi.org/10.1007/s10484-014-9253-x First citation in articleCrossrefGoogle Scholar

  • Van Eekelen, A. P., Houtveen, J. H., & Kerkhof, G. A. (2004). Circadian variation in cardiac autonomic activity: Reactivity measurements to different types of stressors. Chronobiology International, 21(1) 107–129. https://doi.org/10.1081/cbi-120027983 First citation in articleCrossrefGoogle Scholar

  • Vaschillo, E. G., Vaschillo, B., & Lehrer, P. M. (2006). Characteristics of resonance in heart rate variability stimulated by biofeedback. Applied Psychophysiology & Biofeedback, 31(2) 129–142. https://doi.org/10.1007/s10484-006-9009-3 First citation in articleCrossrefGoogle Scholar

  • Waselius, T., Wikgren, J., Penttonen, M., & Nokia, M. S. (2019). Breathe out and learn: Expiration-contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning. Psychophysiology, 56(9) Article e13387. https://doi.org/10.1111/psyp.13387 First citation in articleCrossrefGoogle Scholar

  • Wells, R., Outhred, T., Heathers, J. A., Quintana, D. S., & Kemp, A. H. (2012). Matter over mind: A randomised-controlled trial of single-session biofeedback training on performance anxiety and heart rate variability in musicians. PLoS One, 7, Article e46597. https://doi.org/10.1371/journal.pone.0046597 First citation in articleCrossrefGoogle Scholar

  • West, J. B. (2015). Essays on the history of respiratory physiology, Springer. First citation in articleCrossrefGoogle Scholar

  • West, J. B., & Luks, A. M. (2016). West’s respiratory physiology – The essentials, Wolters Kluwer. First citation in articleGoogle Scholar

  • Yadav, G., & Mutha, P. K. (2016). Deep breathing practice facilitates retention of newly learned motor skills. Scientific Reports, 6, Article 37069. https://doi.org/10.1038/srep37069 First citation in articleCrossrefGoogle Scholar

  • Yasuma, F., & Hayano, J. (2004). Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest, 125, 683–690. https://doi.org/10.1378/chest.125.2.683 First citation in articleCrossrefGoogle Scholar

  • You, M., Laborde, S., Salvotti, C., Zammit, N., Mosley, E., & Dosseville, F. (2021). Influence of a single slow-paced breathing session on cardiac vagal activity in athletes. International Journal of Mental Health and Addiction. Advance online publication. https://doi.org/10.1007/s11469-020-00467-x First citation in articleCrossrefGoogle Scholar

  • Zaccaro, A., Piarulli, A., Laurino, M., Garbella, E., Menicucci, D., Neri, B., & Gemignani, A. (2018). How breath-control can change your life: A systematic review on psycho-physiological correlates of slow breathing. Frontiers in Human Neuroscience, 12, Article r353. https://doi.org/10.3389/fnhum.2018.00353 First citation in articleCrossrefGoogle Scholar

  • Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, J. A. (2016). Nasal respiration entrains human limbic oscillations and modulates cognitive function. Journal of Neuroscience, 36(49) 12448–12467. https://doi.org/10.1523/jneurosci.2586-16.2016 First citation in articleCrossrefGoogle Scholar

  • Zhong, W., Ciatipis, M., Wolfenstetter, T., Jessberger, J., Muller, C., Ponsel, S., Yanovsky, Y., Brankačk, J., Tort, A. B. L., & Draguhn, A. (2017). Selective entrainment of gamma subbands by different slow network oscillations. Proceedings of the National Academy of Sciences of the United States of America, 114(17) 4519–4524. https://doi.org/10.1073/pnas.1617249114 First citation in articleCrossrefGoogle Scholar