Skip to main content
Article

Cognitive Workload in an Auditory Digit Span Task When Memory Span Is in the Neighborhood of Seven Items

Published Online:https://doi.org/10.1027/0269-8803/a000282

Abstract. Task performance of digit span has been widely used in the research on human short-term memory. The present study was conducted to show that the dynamic change of underlying mental effort can be further estimated by measuring the strength of theta oscillations at a forehead site on the scalp. Fourteen healthy adults (Mage = 26.1 years) performed a passive listening (PL) task and an auditory digit span (DS) task, and electroencephalography (EEG) data were recorded simultaneously during the two tasks. Considering that the digit span paradigm has often been conducted in a non-laboratory location, the EEG data were collected with a wireless single-channel headset system. The headset system was validated in this study by replicating the EEG (an enhancement of frontal theta power) as well as event-related potential (N200 and P300) responses to the deviant tone stimuli in the PL task. The outcomes of the DS task showed that the memory span of the participants was at least eight items. Moreover, frontal theta power in response to a list of six to eight digits increased significantly. This pattern of results supports a hypothesis that additional mental effort is required for short-term retention of verbal items when the number of stimulus items exceeds the newly proposed limit of short-term memory capacity. Some strengths and limitations of the current EEG headset system are also discussed.

References

  • American Encephalographic Society. (1994). Guideline thirteen: Guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 11, 111–113. https://doi.org/10.1097/00004691-199401000-00014 First citation in articleCrossrefGoogle Scholar

  • Aminov, A., Rogers, J. M., Johnstone, S. J., Middleton, S., & Wilson, P. H. (2017). Acute single channel EEG predictors of cognitive function after stroke. PLoS One, 12(10), Article e0185841. https://doi.org/10.1371/journal.pone.0185841 First citation in articleCrossrefGoogle Scholar

  • Antle, A. N., Chesick, L., Sridharan, S. K., & Cramer, E. (2018). East meets west: A mobile brain-computer system that helps children living in poverty learn to self-regulate. Personal and Ubiquitous Computing, 22(4), 839–866. https://doi.org/10.1007/s00779-018-1166-x First citation in articleCrossrefGoogle Scholar

  • Ardila, A., Rosselli, M., Ostrosky-Solis, F., Marcos, J., Granda, G., & Soto, M. (2000). Syntactic comprehension verbal memory and calculation abilities in Spanish-English bilinguals. Applied Neuropsychology, 7, 3–16. https://doi.org/10.1207/S15324826AN0701_2 First citation in articleCrossrefGoogle Scholar

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. SpenceJ. T. SpenceEds., The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). Academic Press. First citation in articleGoogle Scholar

  • Bonhage, C. E., Meyer, L., Gruber, T., Friederici, A. D., & Mueller, J. L. (2017). Oscillatory EEG dynamics underlying automatic chunking during sentence processing. NeuroImage, 152, 647–657. https://doi.org/10.1016/j.neuroimage.2017.03.018 First citation in articleCrossrefGoogle Scholar

  • Bor, D., & Owen, A. M. (2007). A common prefrontal–parietal network for mnemonic and mathematical recoding strategies within working memory. Cerebral Cortex, 17(4), 778–786. https://doi.org/10.1093/cercor/bhk035 First citation in articleCrossrefGoogle Scholar

  • Broadbent, D. E. (1958). Perception and communication. Pergamon Press. First citation in articleCrossrefGoogle Scholar

  • Chen, H. Y., & Hung, L. Y. (2004). Construction, reliability and practical utility of the WISC-III forward and backward digit span. Journal of Taiwan Normal University: Education, 49(2), 19–41. https://doi.org/10.29882/JTNUE.200410.0002 First citation in articleGoogle Scholar

  • Chen, C., & Stevenson, H. W. (1988). Cross-linguistic differences in digit span of preschool children. Journal of Experimental Child Psychology, 46, 150–158. https://doi.org/10.1016/0022-0965(88)90027-6 First citation in articleCrossrefGoogle Scholar

  • Chen, C. M., Wang, J. Y., & Yu, C. M. (2017). Assessing the attention levels of students by using a novel attention aware system based on brainwave signals. British Journal of Educational Technology, 48(2), 348–369. https://doi.org/10.1111/bjet.12359 First citation in articleCrossrefGoogle Scholar

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–185. https://doi.org/10.1017/S0140525X01003922 First citation in articleCrossrefGoogle Scholar

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 First citation in articleCrossrefGoogle Scholar

  • Dobbs, B. M., Dobbs, A. R., & Kiss, I. (2001). Working memory deficits associated with chronic fatigue syndrome. Journal of the International Neuropsychological Society, 7(3), 285–293. https://doi.org/10.1017/S1355617701733024 First citation in articleCrossrefGoogle Scholar

  • Ekandem, J. I., Davis, T. A., Alvarez, I., James, M. T., & Gilbert, J. E. (2012). Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics, 55(5), 592–598. https://doi.org/10.1080/00140139.2012.662527 First citation in articleCrossrefGoogle Scholar

  • Elliott, J. M. (1992). Forward digit span and articulation speed for Malay, English, and two Chinese dialects. Perceptual and Motor Skills, 74(1), 291–295. https://doi.org/10.2466/pms.1992.74.1.291 First citation in articleCrossrefGoogle Scholar

  • Fuentemilla, L., Marco-Pallares, J., Muente, T. F., & Grau, C. (2008). Theta EEG oscillatory activity and auditory change detection. Brain Research, 1220, 93–101. https://doi.org/10.1016/j.brainres.2007.07.079 First citation in articleCrossrefGoogle Scholar

  • Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10(9), 829–839. https://doi.org/10.1093/cercor/10.9.829 First citation in articleCrossrefGoogle Scholar

  • Gevins, A., Smith, M. E., Leong, H., Mcevoy, L., Whitfield, S., Du, R., & Rush, G. (1998). Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Human Factors, 40, 79–91. https://doi.org/10.1518/001872098779480578 First citation in articleCrossrefGoogle Scholar

  • Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374–385. https://doi.org/10.1093/cercor/7.4.374 First citation in articleCrossrefGoogle Scholar

  • Gignac, G. E., & Weiss, L. G. (2015). Digit span is (mostly) related linearly to general intelligence: Every extra bit of span counts. Psychological Assessment, 27, 1312–1323. https://doi.org/10.1037/pas0000105 First citation in articleCrossrefGoogle Scholar

  • Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanism in human learning. Trends in Cognitive Sciences, 5(6), 236–243. https://doi.org/10.1016/S1364-6613(00)01662-4 First citation in articleCrossrefGoogle Scholar

  • Halford, G. S., Maybery, M. T., O’Hare, A. W., & Grant, P. (1994). The development of memory and processing capacity. Child Development, 65(5), 1338–1356. https://doi.org/10.2307/1131502 First citation in articleCrossrefGoogle Scholar

  • Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21(6), 803–864. https://doi.org/10.1017/s0140525x98001769 First citation in articleCrossrefGoogle Scholar

  • Harmony, T., Fernandez, T., Gersenowies, J., Galan, L., Fernandez-Bouzas, A., Aubert, E., & Diaz-Comas, L. (2004). Specific EEG frequencies signal general common cognitive processes as well as specific task processes in man. International Journal of Psychophysiology, 53(3), 207–216. https://doi.org/10.1016/j.ijpsycho.2004.04.006 First citation in articleCrossrefGoogle Scholar

  • Hemington, K. S., & Reynolds, J. N. (2014). Electroencephalographic correlates of working memory deficits in children with Fetal Alcohol Spectrum Disorder using a single-electrode pair recording device. Clinical Neurophysiology, 125(12), 2364–2371. https://doi.org/10.1016/j.clinph.2014.03.025 First citation in articleCrossrefGoogle Scholar

  • Hong, L. E., Moran, L. V., Du, X., O’Donnell, P., & Summerfelt, A. (2012). Mismatch negativity and low frequency oscillations in schizophrenia families. Clinical Neurophysiology, 123, 1980–1988. https://doi.org/10.1016/j.clinph.2012.03.011 First citation in articleCrossrefGoogle Scholar

  • Hsiao, F. J., Wu, Z. A., Ho, L. T., & Lin, Y. Y. (2009). Theta oscillation during auditory change detection: An MEG study. Biological Psychology, 81, 58–66. https://doi.org/10.1016/j.biopsycho.2009.01.007 First citation in articleCrossrefGoogle Scholar

  • Hsieh, L. T., Ekstrom, A. D., & Ranganath, C. (2011). Neural oscillations associated with item and temporal order maintenance in working memory. The Journal of Neuroscience, 31(30), 10803–10810. https://doi.org/10.1523/JNEUROSCI.0828-11.2011 First citation in articleCrossrefGoogle Scholar

  • Hsieh, L. T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721–729. https://doi.org/10.1016/j.neuroimage.2013.08.003 First citation in articleCrossrefGoogle Scholar

  • Javitt, D. C., Lee, M., Kantrowitz, J. T., & Martinez, A. (2018). Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophrenia Research, 191, 51–60. https://doi.org/10.1016/j.schres.2017.06.023 First citation in articleCrossrefGoogle Scholar

  • Javitt, D. C., Shelleya, A. M., & Rittera, W. (2000). Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clinical Neurophysiology, 111, 1733–1737. https://doi.org/10.1016/S1388-2457(00)00377-1 First citation in articleCrossrefGoogle Scholar

  • Johnstone, S. J., Blackman, R., & Bruggemann, J. M. (2012). EEG from a single-channel dry-sensor recording device. Clinical EEG and Neuroscience, 43(2), 112–120. https://doi.org/10.1177/1550059411435857 First citation in articleCrossrefGoogle Scholar

  • Kardos, Z., Tóth, B., Boha, R., File, B., & Molnár, M. (2014). Age-related changes of frontal-midline theta is predictive of efficient memory maintenance. Neuroscience, 273, 152–162. https://doi.org/10.1016/j.neuroscience.2014.04.071 First citation in articleCrossrefGoogle Scholar

  • Kirchhoff, B. A., & Buckner, R. L. (2006). Functional-anatomic correlates of individual differences in memory. Neuron, 51(2), 263–274. https://doi.org/10.1016/j.neuron.2006.06.006 First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195. https://doi.org/10.1016/S0165-0173(98)00056-3 First citation in articleCrossrefGoogle Scholar

  • Klimesch, W., Doppelmayr, M., Russegger, H., & Pachinger, T. (1996). Theta band power in the human scalp EEG and the encoding of new information. Neuroreport, 7(7), 1235–1240. https://doi.org/10.1097/00001756-199605170-00002 First citation in articleCrossrefGoogle Scholar

  • Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of Theta and upper Alpha oscillations. Experimental Psychology, 52(2), 99–108. https://doi.org/10.1027/1618-3169.52.2.99 First citation in articleLinkGoogle Scholar

  • Ko, D., Kwon, S., Lee, G. T., Im, C. H., Kim, K. H., & Jung, K. Y. (2012). Theta oscillation related to the auditory discrimination process in mismatch negativity: Oddball versus control paradigm. Journal of Clinical Neurology, 8(1), 35–42. https://doi.org/10.3988/jcn.2012.8.1.35 First citation in articleCrossrefGoogle Scholar

  • Lau-Zhu, A., Lau, M. P. H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience, 36, Article 100635. https://doi.org/10.1016/j.dcn.2019.100635 First citation in articleCrossrefGoogle Scholar

  • Lin, F. R., & Kao, C. M. (2018). Mental effort detection using EEG data in E-learning contexts. Computers & Education, 122, 63–79. https://doi.org/10.1016/j.compedu.2018.03.020 First citation in articleCrossrefGoogle Scholar

  • Lisman, J. E., & Idiart, M. (1995). Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515. https://doi.org/10.1126/science.7878473 First citation in articleCrossrefGoogle Scholar

  • Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press. First citation in articleGoogle Scholar

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. https://doi.org/10.1038/36846 First citation in articleCrossrefGoogle Scholar

  • Luque, J. R., Morón, M. J., & Casilari, E. (2012). Analytical and empirical evaluation of the impact of Gaussian noise on the modulations employed by Bluetooth enhanced data rates. Journal on Wireless Communication and Networking, 2012(1), Article 100635. https://doi.org/10.1186/1687-1499-2012-94 First citation in articleGoogle Scholar

  • Mahajan, Y., Peter, V., & Sharma, M. (2017). Effect of EEG referencing methods on auditory mismatch negativity. Frontiers in Neuroscience, 11, Article 560. https://doi.org/10.3389/fnins.2017.00560 First citation in articleCrossrefGoogle Scholar

  • Mattys, S. L., Baddeley, A., & Trenkic, D. (2018). Is the superior verbal memory span of Mandarin speakers due to faster rehearsal? Memory and Cognition, 46(3), 361–369. https://doi.org/10.3758/s13421-017-0770-8 First citation in articleCrossrefGoogle Scholar

  • Meltzer, J. A., Kielar, A., Panamsky, L., Links, K. A., Deschamps, T., & Leigh, R. C. (2017). Electrophysiological signatures of phonological and semantic maintenance in sentence repetition. NeuroImage, 156, 302–314. https://doi.org/10.1016/j.neuroimage.2017.05.030 First citation in articleCrossrefGoogle Scholar

  • Meltzer, J. A., Negishi, M., Mayes, L. C., & Constable, R. T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clinical Neurophysiology, 118(11), 2419–2436. https://doi.org/10.1016/j.clinph.2007.07.023 First citation in articleCrossrefGoogle Scholar

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. https://doi.org/10.1037/0033-295X.101.2.343 First citation in articleCrossrefGoogle Scholar

  • Miotto, E. C., Savage, C. R., Evans, J. J., Wilson, B. A., Martins, M., Iaki, S., & Amaro, E. Jr. (2006). Bilateral activation of the prefrontal cortex after strategic semantic cognitive training. Human Brain Mapping, 27, 288–295. https://doi.org/10.1002/hbm.20184 First citation in articleCrossrefGoogle Scholar

  • Morrison, A. B., Rosenbaum, G. M., Fair, D., & Chein, J. M. (2016). Variation in strategy use across measures of verbal working memory. Memory and Cognition, 44, 922–936. https://doi.org/10.3758/s13421-016-0608-9 First citation in articleCrossrefGoogle Scholar

  • Näätänen, R., Kujala, T., Escera, C., Baldeweg, T., Kreegipuu, K., Carlson, S., & Ponton, C. (2012). The mismatch negativity (MMN) – A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123, 424–458. https://doi.org/10.1016/j.clinph.2011.09.020 First citation in articleCrossrefGoogle Scholar

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026 First citation in articleCrossrefGoogle Scholar

  • Naveh-Benjamin, M., & Ayres, T. J. (1986). Digit span, reading rate, and linguistic relativity. The Quarterly Journal of Experimental Psychology Section A, 38(4), 739–751. https://doi.org/10.1080/14640748608401623 First citation in articleCrossrefGoogle Scholar

  • Noël, M. P. (2009). Counting on working memory when learning to count and add: A preschool study. Developmental Psychology, 45, 1630–1643. https://doi.org/10.1037/a0016224 First citation in articleCrossrefGoogle Scholar

  • Ogino, M., Kanoga, S., Muto, M., & Mitsukura, Y. (2019). Analysis of prefrontal single-channel EEG data for portable auditory ERP-based brain-computer interfaces. Frontiers in Human Neuroscience, 13, Article 250. https://doi.org/10.3389/fnhum.2019.00250 First citation in articleCrossrefGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 First citation in articleCrossrefGoogle Scholar

  • Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27, 341–356. https://doi.org/10.1016/j.neuroimage.2005.04.014 First citation in articleCrossrefGoogle Scholar

  • Orsini, A., Schiappa, O., & Grossi, D. (1981). Sex and cultural differences in children’s spatial and verbal memory span. Perceptual and Motor Skills, 53, 39–42. https://doi.org/10.2466/pms.1981.53.1.39 First citation in articleCrossrefGoogle Scholar

  • Ottem, E. J., Lian, A., & Karlsen, P. J. (2007). Reasons for the growth of traditional memory span across age. European Journal of Cognitive Psychology, 19, 233–270. https://doi.org/10.1080/09541440600684653 First citation in articleCrossrefGoogle Scholar

  • Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W. Y., Humes, L. E., Lemke, U., Lunner, T., Matthen, M., Mackersie, C. L., Naylor, G., Phillips, N. A., Richter, M., Rudner, M., Sommers, M. S., Tremblay, K. L., Wingfield, A., & Wingfield, A. (2016). Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear and Hearing, 37, 5S–27S. https://doi.org/10.1097/AUD.0000000000000312 First citation in articleCrossrefGoogle Scholar

  • Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127–152. https://doi.org/10.1111/1469-8986.3720127 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2012). Neuropsychology of P300. In S. J. LuchE. S. KappenmanEds., The Oxford handbook of event-related potential components (pp. 159–188). Oxford University Press. First citation in articleGoogle Scholar

  • Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., Madsen, J. R., & Lisman, J. E. (2001). Gating of human theta oscillations by a working memory task. The Journal of Neuroscience, 21(9), 3175–3183. https://doi.org/10.1523/JNEUROSCI.21-09-03175.2001 First citation in articleCrossrefGoogle Scholar

  • Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. Elsevier. First citation in articleGoogle Scholar

  • Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O., & Lécuyer, A. (2010). OpenViBE: An open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence: Teleoperators and Virtual Environments, 19(1), 35–53. https://doi.org/10.1162/pres.19.1.35 First citation in articleCrossrefGoogle Scholar

  • Rieiro, H., Diaz-Piedra, C., Miguel Morales, J., Catena, A., Romero, S., Roca-Gonzalez, J., Fuentes, L. J., & Di Stasi, L. L. (2019). Validation of electroencephalographic recordings obtained with a consumer-grade, single dry electrode, low-cost device: A comparative study. Sensors, 19(12), Article 2808. https://doi.org/10.3390/s19122808 First citation in articleCrossrefGoogle Scholar

  • Roberts, B. M., Hsieh, L. T., & Ranganath, C. (2013). Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia, 51, 349–357. https://doi.org/10.1016/j.neuropsychologia.2012.10.009 First citation in articleCrossrefGoogle Scholar

  • Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16–25. https://doi.org/10.1016/j.tics.2013.10.010 First citation in articleCrossrefGoogle Scholar

  • Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731. https://doi.org/10.1162/08989290260138627 First citation in articleCrossrefGoogle Scholar

  • Sams, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography & Clinical Neurophysiology, 62(6), 437–448. https://doi.org/10.1016/0168-5597(85)90054-1 First citation in articleCrossrefGoogle Scholar

  • Scharinger, C., Soutschek, A., Schubert, T., & Gerjets, P. (2017). Comparison of the working memory load in N-back and working memory span tasks by means of EEG frequency band power and P300 amplitude. Frontiers in Human Neuroscience, 11, Article 6. https://doi.org/10.3389/fnhum.2017.00006 First citation in articleCrossrefGoogle Scholar

  • Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli. Electroencephalography and Clinical Neurophysiology, 38, 387–401. https://doi.org/10.1016/0013-4694(75)90263-1 First citation in articleCrossrefGoogle Scholar

  • Stigler, J. W., Lee, S. Y., & Stevenson, H. W. (1986). Digit memory in Chinese and English: Evidence for a temporally limited store. Cognition, 23, 1–20. https://doi.org/10.1016/0010-0277(86)90051-X First citation in articleCrossrefGoogle Scholar

  • Sun, J. C.-Y. (2014). Influence of polling technologies on student engagement: An analysis of student motivation, academic performance, and brainwave data. Computers & Education, 72, 80–89. https://doi.org/10.1016/j.compedu.2013.10.010 First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (2003). WISC-IV Administration and Scoring Manual. The Psychological Corporation. First citation in articleGoogle Scholar

  • Zakrzewska, M. Z., & Brzezicka, A. (2014). Working memory capacity as a moderator of load-related frontal midline theta variability in Sternberg task. Frontiers in Human Neuroscience, 8, Article 399. https://doi.org/10.3389/fnhum.2014.00399 First citation in articleCrossrefGoogle Scholar