Skip to main content
Article

Functional Significance of Individual Differences in P3 Network Spatial Configuration

Published Online:https://doi.org/10.1027/0269-8803/a000295

Abstract. The amplitude and latency of the P3 component in the electroencephalogram (EEG) event-related potentials (ERPs) are among the most extensively used markers for individual differences in normal and abnormal brain functions. In contrast, individual variations in spatial topography of the temporally-defined P3 component are relatively under-explored. Development in EEG-based source imaging opened up the possibility that individual-specific spatial configuration of the neural network underlying the temporally-defined P3 component bear a novel source of information for marking an individual difference in behavioral and cognitive function. In testing this hypothesis, a hybrid method consisting of blind source separation (BSS), equivalent current dipole (ECD) modeling, and hits-vector-based analysis was applied to continuous un-epoched EEG data collected from 13 healthy human participants performing a visual color oddball task. By analyzing the spatial configuration of the network underlying the temporally-defined P3 component, hereafter referred to as the P3N, we discovered that the contribution of each constituent structure within the P3N is not uniform. Instead, frontal lobe structures have significantly more involvement than other constituent structures, as quantitatively characterized by cross-individual reliability and a within-individual contribution to the P3N. A factor analysis of the hits vector data revealed that although P3 latency and amplitude did not show significant correlations with measures of the behavioral outcomes, scores of two factors derived from the hits vectors selectively predict behavioral reaction time and response correctness. These results support the hypothesis that variations in P3 spatial configuration reflect not merely noise but individual-specific features with functional significance.

References

  • Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain’s language network: Syntactic ambiguity resolution after TMS to the inferior frontal gyrus and middle temporal gyrus. Journal of Cognitive Neuroscience, 25(10), 1664–1677. https://doi.org/10.1162/jocn_a_00430 First citation in articleCrossrefGoogle Scholar

  • Amin, H. U., Malik, A. S., Kamel, N., Chooi, W.-T., & Hussain, M. (2015). P300 correlates with learning & memory abilities and fluid intelligence. Journal of Neuroengineering and Rehabilitation, 12(1), Article 87. https://doi.org/10.1186/s12984-015-0077-6 First citation in articleCrossrefGoogle Scholar

  • Ardila, A., Bernal, B., & Rosselli, M. (2017). Should Broca’s area include Brodmann area 47? Psicothema, 29(1), 73–77. https://doi.org/10.7334/psicothema2016.11 First citation in articleGoogle Scholar

  • Asadzadeh, S., Yousefi Rezaii, T., Beheshti, S., Delpak, A., & Meshgini, S. (2020). A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities. Journal of Neuroscience Methods, 339, Article 108740. https://doi.org/10.1016/j.jneumeth.2020.108740 First citation in articleCrossrefGoogle Scholar

  • Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mañanas, M. A., Poza, J., & Hornero, R. (2015). Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophrenia Research, 169(1–3), 318–325. https://doi.org/10.1016/j.schres.2015.09.028 First citation in articleCrossrefGoogle Scholar

  • Barry, R. J., Steiner, G. Z., De Blasio, F. M., Fogarty, J. S., Karamacoska, D., & MacDonald, B. (2019). Components in the P300: Don’t forget the novelty P3!. Psychophysiology, 57(7), Article e13371. https://doi.org/10.1111/psyp.13371 First citation in articleGoogle Scholar

  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1993). Second-order blind separation of temporally correlated sources [Paper presentation]. Proceedings of the International Conference on Digital Signal Processing (pp. 346–351). Citeseer. First citation in articleGoogle Scholar

  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2), 434–444. https://doi.org/10.1109/78.554307 First citation in articleCrossrefGoogle Scholar

  • Bullmore, E. (2020). Getting below the surface of behavioral symptoms in psychiatry. Biological Psychiatry, 87(4), 316–317. https://doi.org/10.1016/j.biopsych.2019.12.007 First citation in articleCrossrefGoogle Scholar

  • Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290–298. https://doi.org/10.1016/j.tics.2007.05.004 First citation in articleCrossrefGoogle Scholar

  • Cha, K. S., Choi, J. W., Jung, K. Y., & Kim, K. H. (2017). Frontal dysfunction in patients with restless legs syndrome performing a visual oddball task: An event-related potential source imaging study. Sleep Medicine, 36, 48–54. https://doi.org/10.1016/j.sleep.2017.04.017 First citation in articleCrossrefGoogle Scholar

  • Clark, V. P., Fannon, S., Lai, S., Benson, R., & Bauer, L. (2000). Responses to rare visual target and distractor stimuli using event-related fMRI. Journal of Neurophysiology, 83(5), 3133–3139. https://doi.org/10.1152/jn.2000.83.5.3133 First citation in articleCrossrefGoogle Scholar

  • Clarke, A. R., Barry, R. J., Karamacoska, D., & Johnstone, S. J. (2019). The EEG theta/beta ratio: A marker of arousal or cognitive processing capacity? Applied Psychophysiology and Biofeedback, 44(2), 123–129. https://doi.org/10.1007/s10484-018-09428-6 First citation in articleCrossrefGoogle Scholar

  • Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Executive functions. Handbook of Clinical Neurology, 163, 197–219. https://doi.org/10.1016/B978-0-12-804281-6.00011-2 First citation in articleCrossrefGoogle Scholar

  • Dapretto, M., & Bookheimer, S. Y. (1999). Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron, 24(2), 427–432. https://doi.org/10.1016/S0896-6273(00)80855-7 First citation in articleCrossrefGoogle Scholar

  • Dickson, D. S., & Wicha, N. Y. Y. (2019). P300 amplitude and latency reflect arithmetic skill: An ERP study of the problem size effect. Biological Psychology, 148, Article 107745. https://doi.org/10.1016/j.biopsycho.2019.107745 First citation in articleCrossrefGoogle Scholar

  • Dronkers, N. F., Wilkins, D. P., Van Valin Jr, R. D., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145–177. https://doi.org/10.1016/j.cognition.2003.11.002 First citation in articleCrossrefGoogle Scholar

  • Duncan-Johnson, C. C., & Donchin, E. (1982). The P300 component of the event-related brain potential as an index of information processing. Biological Psychology, 14(1–2), 1–52. https://doi.org/10.1016/0301-0511(82)90016-3 First citation in articleCrossrefGoogle Scholar

  • Finn, E. S., & Constable, T. R. (2016). Individual variation in functional brain connectivity: Implications for personalized approaches to psychiatric disease. Dialogues in Clinical Neuroscience, 18(3), 277–287. https://doi.org/10.31887/DCNS.2016.18.3/efinn First citation in articleCrossrefGoogle Scholar

  • Hedges, D., Janis, R., Mickelson, S., Keith, C., Bennett, D., & Brown, B. L. (2016). P300 amplitude in Alzheimer’s disease: A meta-analysis and meta-regression. Clinical EEG and Neuroscience, 47(1), 48–55. https://doi.org/10.1177/1550059414550567 First citation in articleCrossrefGoogle Scholar

  • Jollans, L., & Whelan, R. (2018). Neuromarkers for mental disorders: Harnessing population neuroscience. Frontiers in Psychiatry, 9, Article 242. https://doi.org/10.3389/fpsyt.2018.00242 First citation in articleCrossrefGoogle Scholar

  • Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318(5850), 594–598. https://doi.org/10.1126/science.1142995 First citation in articleCrossrefGoogle Scholar

  • Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197(4305), 792–795. https://doi.org/10.1126/science.887923 First citation in articleCrossrefGoogle Scholar

  • Lafer-Sousa, R., & Conway, B. R. (2013). Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nature Neuroscience, 16(12), 1870–1878. https://doi.org/10.1038/nn.3555 First citation in articleCrossrefGoogle Scholar

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., Kochunov, P. V., Nickerson, D., Mikiten, S. A., & Fox, P. T. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131. https://doi.org/10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 First citation in articleCrossrefGoogle Scholar

  • Lantz, G., De Peralta, R. G., Spinelli, L., Seeck, M., & Michel, C. M. (2003). Epileptic source localization with high density EEG: How many electrodes are needed? Clinical Neurophysiology, 114(1), 63–69. https://doi.org/10.1016/S1388-2457(02)00337-1 First citation in articleCrossrefGoogle Scholar

  • Linden, D. E. J. (2005). The P300: Where in the brain is it produced and what does it tell us? The Neuroscientist, 11(6), 563–576. https://doi.org/10.1177/1073858405280524 First citation in articleCrossrefGoogle Scholar

  • Lio, G., & Boulinguez, P. (2013). Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: Implications for single-subject and group analyses. NeuroImage, 67, 137–152. https://doi.org/10.1016/j.neuroimage.2012.11.015 First citation in articleCrossrefGoogle Scholar

  • Liu, Q., Ganzetti, M., Wenderoth, N., & Mantini, D. (2018). Detecting large-scale brain networks using EEG: Impact of electrode density, head modeling and source localization. Frontiers in Neuroinformatics, 12, Article 4. https://doi.org/10.3389/fninf.2018.00004 First citation in articleCrossrefGoogle Scholar

  • Lydiard, J., & Nemeroff, C. B. (2019). Biomarker-guided tailored therapy. In Y. K. KimEd., Frontiers in psychiatry. Advances in experimental medicine and biology (Vol. 1192, pp. 199–224). Springer. https://doi.org/10.1007/978-981-32-9721-0_10 First citation in articleCrossrefGoogle Scholar

  • Marder, E. (2012). Neuromodulation of neuronal circuits: Back to the future. Neuron, 76(1), 1–11. https://doi.org/10.1016/j.neuron.2012.09.010 First citation in articleCrossrefGoogle Scholar

  • McCarthy, G., & Donchin, E. (1981). A metric for thought: A comparison of P300 latency and reaction time. Science, 211(4477), 77–80. https://doi.org/10.1126/science.7444452 First citation in articleCrossrefGoogle Scholar

  • Mecklinger, A., Maess, B., Opitz, B., Pfeifer, E., Cheyne, D., & Weinberg, H. (1998). A MEG analysis of the P300 in visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 108(1), 45–56. https://doi.org/10.1016/S0168-5597(97)00092-0 First citation in articleCrossrefGoogle Scholar

  • Morlet, D., & Fischer, C. (2014). MMN and novelty P3 in coma and other altered states of consciousness: A review. Brain Topography, 27(4), 467–479. https://doi.org/10.1007/s10548-013-0335-5 First citation in articleCrossrefGoogle Scholar

  • Mumtaz, W., Vuong, P. L., Malik, A. S., & Rashid, R. B. A. (2018). A review on EEG-based methods for screening and diagnosing alcohol use disorder. Cognitive Neurodynamics, 12(2), 141–156. https://doi.org/10.1007/s11571-017-9465-x First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131(4), 510–532. https://doi.org/10.1037/0033-2909.131.4.510 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162–175. https://doi.org/10.1111/j.1469-8986.2010.01057.x First citation in articleCrossrefGoogle Scholar

  • Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(7), 1718–1731. https://doi.org/10.1093/brain/awm052 First citation in articleCrossrefGoogle Scholar

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl. D), 5–12. First citation in articleGoogle Scholar

  • Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., Tanaka, H., Hirata, K., John, E. R., Prichep, L., & Biscay-Lirio, R. (2011). Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1952), 3768–3784. https://doi.org/10.1098/rsta.2011.0081 First citation in articleCrossrefGoogle Scholar

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65. https://doi.org/10.1016/0167-8760(84)90014-x First citation in articleCrossrefGoogle Scholar

  • Pavarini, S. C. I., Brigola, A. G., Luchesi, B. M., Souza, É. N., Rossetti, E. S., Fraga, F. J., Guarisco, L. P. C., Terassi, M., Oliveira, N. A., Hortense, P., & Pedroso, R. V. (2018). On the use of the P300 as a tool for cognitive processing assessment in healthy aging: A review. Dementia & Neuropsychologia, 12(1), 1–11. https://doi.org/10.1590/1980-57642018dn12-010001 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2011). Neuropsychology of P300. In S. J. LuckE. S. KappenmanEds., Oxford handbook of event-related potential components (pp. 159–188). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0089 First citation in articleCrossrefGoogle Scholar

  • Polich, J., & Herbst, K. L. (2000). P300 as a clinical assay: Rationale, evaluation, and findings. International Journal of Psychophysiology, 38(1), 3–19. https://doi.org/10.1016/s0167-8760(00)00127-6 First citation in articleCrossrefGoogle Scholar

  • Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41(2), 103–146. https://doi.org/10.1016/0301-0511(95)05130-9 First citation in articleCrossrefGoogle Scholar

  • Polich, J., & Martin, S. (1992). P300, cognitive capability, and personality: A correlational study of university undergraduates. Personality and Individual Differences, 13(5), 533–543. https://doi.org/10.1016/0191-8869(92)90194-T First citation in articleCrossrefGoogle Scholar

  • Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews. Neuroscience, 4(3), 193–202. https://doi.org/10.1038/nrn1052 First citation in articleCrossrefGoogle Scholar

  • Saletu, B., Anderer, P., Saletu-Zyhlarz, G. M., & Pascual-Marqui, R. D. (2002). EEG topography and tomography in diagnosis and treatment of mental disorders: Evidence for a key-lock principle. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 97–106. First citation in articleGoogle Scholar

  • Shine, J. M. (2019). Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive Sciences, 23(7), 572–583. https://doi.org/10.1016/j.tics.2019.04.002 First citation in articleCrossrefGoogle Scholar

  • Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Reviews in Neurobiology, 14(3–4), 199–224. https://doi.org/10.1615/CritRevNeurobiol.v14.i3-4.20 First citation in articleCrossrefGoogle Scholar

  • Sowndhararajan, K., Kim, M., Deepa, P., Park, S. J., & Kim, S. (2018). Application of the P300 event-related potential in the diagnosis of epilepsy disorder: A review. Scientia Pharmaceutica, 86(2), Article 10. https://doi.org/10.3390/scipharm86020010 First citation in articleCrossrefGoogle Scholar

  • Sun, R., Chan, C., Hsiao, J., & Tang, A. C. (2021). Validation of SOBI‐DANS method for automatic identification of horizontal and vertical eye movement components from EEG. Psychophysiology, 58(2), Article e13731. https://doi.org/10.1111/psyp.13731 First citation in articleCrossrefGoogle Scholar

  • Sutherland, M. T., & Tang, A. C. (2006a, March 13–15). Blind source separation can recover systematically distributed neuronal sources from resting EEG. Paper presented at the Second International Symposium on Communications, Control, and Signal Processing (ISCCSP 2006), Marrakech, Morocco. First citation in articleGoogle Scholar

  • Sutherland, M. T., & Tang, A. C. (2006b). Reliable detection of bilateral activation in human primary somatosensory cortex by unilateral median nerve stimulation. NeuroImage, 33(4), 1042–1054. https://doi.org/10.1016/j.neuroimage.2006.08.015 First citation in articleCrossrefGoogle Scholar

  • Tang, A. C. (2010). Applications of second order blind identification to high-density EEG-based brain imaging: A review. In L. ZhangB. L. LuJ. Kwok (Eds.), Lecture notes in computer science (Vol. 6064, pp. 368–377). Springer. https://doi.org/10.1007/978-3-642-13318-3_46 First citation in articleGoogle Scholar

  • Tang, A. C., Liu, J.-Y., & Sutherland, M. T. (2005). Recovery of correlated neuronal sources from EEG: The good and bad ways of using SOBI. NeuroImage, 28(2), 507–519. https://doi.org/10.1016/j.neuroimage.2005.06.062 First citation in articleCrossrefGoogle Scholar

  • Tang, A. C., Privitera, A. J., Fung, R., & Hua, Y. (2021). Task-free recovery and spatial characterization of a globally synchronized network from resting-state EEG. In W. GaoJ. ZhanY. ZhangQ. GongC. RongY. ZhangL. WangT. WuW. QianX. SiJ. XuZ. QiuEds., Communications in computer and information science. (pp. 22–38). Springer. https://doi.org/10.1007/978-981-16-1160-5_3 First citation in articleCrossrefGoogle Scholar

  • Tang, A. C., Sutherland, M. T., & McKinney, C. J. (2005). Validation of SOBI components from high-density EEG. NeuroImage, 25(2), 539–553. https://doi.org/10.1016/j.neuroimage.2004.11.027 First citation in articleCrossrefGoogle Scholar

  • Tang, A. C., Sutherland, M. T., McKinney, C. J., Liu, J. Y., Wang, Y., Parra, L. C., Gerson, A. D., & Sajda, P. (2006). Classifying single-trial ERPs from visual and frontal cortex during free viewing. The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 1376–1383. https://doi.org/10.1109/IJCNN.2006.246853 First citation in articleGoogle Scholar

  • Tang, A. C., Sutherland, M. T., & Wang, Y. (2006). Contrasting single-trial ERPs between experimental manipulations: Improving differentiability by blind source separation. NeuroImage, 29(1), 335–346. https://doi.org/10.1016/j.neuroimage.2005.07.058 First citation in articleCrossrefGoogle Scholar

  • Tang, A. C., Sutherland, M. T., & Yang, Z. (2011). Capturing “trial-to-trial” variations in human brain activity. In M. DingD. L. GlanzmanEds., The dynamic brain: An exploration of neuronal variability and its functional significance (pp. 183–213). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195393798.001.0001 First citation in articleCrossrefGoogle Scholar

  • Urigüen, J. A., & Garcia-Zapirain, B. (2015). EEG artifact removal – State-of-the-art and guidelines. Journal of Neural Engineering, 12(3), Article 031001. https://doi.org/10.1088/1741-2560/12/3/031001 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34(2), 131–156. https://doi.org/10.1111/j.1469-8986.1997.tb02125.x First citation in articleCrossrefGoogle Scholar

  • Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19(3), 165–181. https://doi.org/10.1027/0269-8803.19.3.165 First citation in articleLinkGoogle Scholar

  • Volpe, U., Mucci, A., Bucci, P., Merlotti, E., Galderisi, S., & Maj, M. (2007). The cortical generators of P3 and P3b: A LORETA study. Brain Research Bulletin, 73(4–6), 220–230. https://doi.org/10.1016/j.brainresbull.2007.03.003 First citation in articleCrossrefGoogle Scholar

  • Wada, M., Kurose, S., Miyazaki, T., Nakajima, S., Masuda, F., Mimura, Y., Nishida, H., Ogyu, K., Tsugawa, S., Mashima, Y., & Plitman, E. (2019). The P300 event-related potential in bipolar disorder: A systematic review and meta-analysis. Journal of Affective Disorders, 256, 234–249. https://doi.org/10.1016/j.jad.2019.06.010 First citation in articleCrossrefGoogle Scholar

  • Wang, Y., Sutherland, M. T., Sanfratello, L. L., & Tang, A. C. (2004). August). Single-trial classification of ERPS using second-order blind identification (SOBI). In Y. WangEd., Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826) (Vol. 7, pp. 4246–4251). IEEE. https://doi.org/10.1109/ICMLC.2004.1384584 First citation in articleCrossrefGoogle Scholar

  • Winterer, G., Mulert, C., Mientus, S., Gallinat, J., Schlattmann, P., Dorn, H., & Herrmann, W. M. (2001). P300 and LORETA: Comparison of normal subjects and schizophrenic patients. Brain Topography, 13(4), 299–313. https://doi.org/10.1023/a:1011184814194 First citation in articleCrossrefGoogle Scholar

  • Wronka, E., Kaiser, J., & Coenen, A. M. (2012). Neural generators of the auditory evoked potential components P3a and P3b. Acta Neurobiologiae Experimentalis, 72(1), 51–64. First citation in articleGoogle Scholar

  • Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692. https://doi.org/10.1016/j.neuron.2005.04.026 First citation in articleCrossrefGoogle Scholar

  • Zhang, Y., Tang, A. C., & Zhou, X. (2014). Synchronized network activity as the origin of a P300 component in a facial attractiveness judgment task. Psychophysiology, 51(3), 285–289. https://doi.org/10.1111/psyp.12153 First citation in articleCrossrefGoogle Scholar

  • Zhong, R., Li, M., Chen, Q., Li, J., Li, G., & Lin, W. (2019). The P300 event-related potential component and cognitive impairment in epilepsy: A systematic review and meta-analysis. Frontiers in Neurology, 10, Article 943. https://doi.org/10.3389/fneur.2019.00943 First citation in articleCrossrefGoogle Scholar

  • Zhou, L., Wang, G., Nan, C., Wang, H., Liu, Z., & Bai, H. (2019). Abnormalities in P300 components in depression: An ERP-sLORETA study. Nordic Journal of Psychiatry, 73(1), 1–8. https://doi.org/10.1080/08039488.2018.1478991 First citation in articleCrossrefGoogle Scholar