Skip to main content

Innovation Climate Profiles

Latent Profile Analyses of the Team Climate Inventory Across Two Samples

Published Online:https://doi.org/10.1027/1015-5759/a000773

Abstract: While person-centered analyses can provide information on important configural effects in the context of multi-dimensional constructs, we have found little research taking this approach with innovation climate. Specifically, we found no research applying this approach to results from the Team Climate Inventory, the most frequently used questionnaire on innovation climate. Therefore, we explore the presence of latent profiles in responses to the Team Climate Inventory and extend this exploration to associations between the profiles and self-reported innovative behaviors. Latent profile analyses conducted on two samples of 435 and 461 participants indicated the presence of three innovation climate profiles respectively indicating low, medium, and high scores on innovation climate dimensions. Innovative behaviors covaried with profiles accordingly. The multi-group analysis supported the similarity between latent profile solutions across samples. We discuss the apparent lack of potential for configural effects and invite researchers who could be interested in interactive effects between climate dimensions to verify whether the configurations implied by their interactions are actually present in the data.

References

  • Aiman-Smith, L., Goodrich, N., Roberts, D., & Scinta, J. (2005). Assessing your organization’s potential for value innovation. Research-Technology Management, 48(2), 37–42. https://doi.org/10.1080/08956308.2005.11657303 First citation in articleCrossrefGoogle Scholar

  • Amabile, T. M., Conti, R., Coon, H., Lazenby, J., & Herron, M. (1996). Assessing the work environment for creativity. Academy of Management Journal, 39(5), 1154–1184. https://doi.org/10.5465/256995 First citation in articleCrossrefGoogle Scholar

  • Anderson, N., & West, M. A. (1996). The team climate inventory: Development of the TCI and its applications in teambuilding for innovativeness. European Journal of Work and Organizational Psychology, 5(1), 53–66. https://doi.org/10.1080/13594329608414840 First citation in articleCrossrefGoogle Scholar

  • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models over-extraction of latent trajectory classes. Psychological Methods, 8(3), 338–363. https://doi.org/10.1037/1082-989X.8.3.338 First citation in articleCrossrefGoogle Scholar

  • Bollen, K. A. (1989). Structural equations with latent variables. Wiley. First citation in articleCrossrefGoogle Scholar

  • Cantwell, A. R. (2010). Improving the prediction of commitment and innovative work behavior from climate for innovation perceptions: An application of latent profile analysis (Publication No. 3425890) [PhD Dissertation, North Carolina State University]. ProQuest Dissertations and Theses Global. First citation in articleGoogle Scholar

  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464–504. https://doi.org/10.1080/10705510701301834 First citation in articleCrossrefGoogle Scholar

  • Chen, F., Bollen, K. A., Paxton, P., Curran, P. J., & Kirby, J. B. (2001). Improper solutions in structural models: Causes, consequences, strategies. Sociological Methods & Research, 29(4), 468–508. https://doi.org/10.1177/0049124101029004003 First citation in articleCrossrefGoogle Scholar

  • Eisenbeiss, S. A., Van Knippenberg, D., & Boerner, S. (2008). Transformational leadership and team innovation: Integrating team climate principles. Journal of Applied Psychology, 93(6), 1438–1446. https://doi.org/10.1037/a0012716 First citation in articleCrossrefGoogle Scholar

  • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11(1), 36–53. https://doi.org/10.1037/1082-989x.11.1.36 First citation in articleCrossrefGoogle Scholar

  • Hu, L. T., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis. Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 First citation in articleCrossrefGoogle Scholar

  • Isaksen, S. G., & Akkermans, H. J. (2011). Creative climate: A leadership lever for innovation. The Journal of Creative Behavior, 45(3), 161–187. https://doi.org/10.1002/j.2162-6057.2011.tb01425.x First citation in articleCrossrefGoogle Scholar

  • Jiang, Y., Wang, Q., & Weng, Q. (2021). Personality and organizational career growth: The moderating roles of innovation climate and innovation climate strength. Journal of Career Development, 48(4), 521–536. https://doi.org/10.1177/0894845320901798 First citation in articleCrossrefGoogle Scholar

  • Kang, J. H., Matusik, J. G., Kim, T.-Y., & Phillips, J. M. (2016). Interactive effects of multiple organizational climates on employee innovative behavior in entrepreneurial firms: A cross-level investigation. Journal of Business Venturing, 31(6), 628–642. https://doi.org/10.1016/j.jbusvent.2016.08.002 First citation in articleCrossrefGoogle Scholar

  • Kivimaki, M., & Elovainio, M. (1999). A shorter version of the Team Climate Inventory: Development and psychometric properties. Journal of Occupational and Organizational Psychology, 72(2), 241–246. https://doi.org/10.1348/096317999166644 First citation in articleCrossrefGoogle Scholar

  • Lajoie, D., Bonnardel, D., & Chénard-Poirier, L. A. (2023). Mplus code and data for: Innovation climate profiles: Latent profile analyses of the team climate inventory across two samples [Data set]. PsychArchives. https://doi.org/10.23668/psycharchives.12836 First citation in articleGoogle Scholar

  • Lee, Y., & Yoo, S. (2020). Individual profiles and team classes of the climate for creativity: A multilevel latent profile analysis. Creativity and Innovation Management, 29(3), 438–452. https://doi.org/10.1111/caim.12371 First citation in articleCrossrefGoogle Scholar

  • Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767–778. https://www.jstor.org/stable/2673445 First citation in articleCrossrefGoogle Scholar

  • Marsh, H. W., Hau, K.-T., & Grayson, D. (2005). Goodness of fit evaluation in structural equation modeling. In A. Maydeu-OlivaresJ. McArdleEds., Multivariate applications book series. Contemporary psychometrics: A Festschrift for Roderick P. McDonald (pp. 275–340). Erlbaum. First citation in articleGoogle Scholar

  • Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S. (2009). Classical latent profile analysis of academic self-concept dimensions: Synergy of person- and variable-centered approaches to theoretical models of self-concept. Structural Equation Modeling, 16(2), 191–225. First citation in articleCrossrefGoogle Scholar

  • Meyer, R. D., Dalal, R. S., & Hermida, R. (2010). A review and synthesis of situational strength in the organizational sciences. Journal of Management, 36(1), 121–140. https://doi.org/10.1177/0149206309349309 First citation in articleCrossrefGoogle Scholar

  • Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge. First citation in articleGoogle Scholar

  • Morin, A. J. S. (2016). Person-centered research strategies in commitment research. In J. P. MeyerEd., Handbook of employee commitment (pp. 490–508). Edward Elgar. First citation in articleCrossrefGoogle Scholar

  • Morin, A. J., Meyer, J. P., Creusier, J., & Biétry, F. (2016). Multiple-group analysis of similarity in latent profile solutions. Organizational Research Methods, 19(2), 231–254. https://doi.org/10.1177/1094428115621148 First citation in articleCrossrefGoogle Scholar

  • Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29(1), 81–117. https://doi.org/10.2333/bhmk.29.81 First citation in articleCrossrefGoogle Scholar

  • Muthén, L. K., & Muthén, B. (2017). Mplus user’s guide. Muthén & Muthén. First citation in articleGoogle Scholar

  • Newman, A., Round, H., Wang, S., & Mount, M. (2020). Innovation climate: A systematic review of the literature and agenda for future research. Journal of Occupational and Organizational Psychology, 93(1), 73–109. https://doi.org/10.1111/joop.12283 First citation in articleCrossrefGoogle Scholar

  • Raykov, T., & Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling, 11(4), 621–637. https://doi.org/10.1207/s15328007sem1104_7 First citation in articleCrossrefGoogle Scholar

  • Rousseau, M. B., Mathias, B. D., Madden, L. T., & Crook, T. R. (2016). Innovation, firm performance, and appropriation: A meta-analysis. International Journal of Innovation Management, 20(03), 1–29. https://doi.org/10.1142/S136391961650033X First citation in articleCrossrefGoogle Scholar

  • Salancik, G. R., & Pfeffer, J. (1978). A social information processing approach to job attitudes and task design. Administrative Science Quarterly, 23(2), 224–253. https://www.jstor.org/stable/2392563 First citation in articleCrossrefGoogle Scholar

  • Scott, S. G., & Bruce, R. A. (1994). Determinants of innovative behavior: A path model of individual innovation in the workplace. The Academy of Management Journal, 37(3), 580–607. https://doi.org/10.2307/256701 First citation in articleGoogle Scholar

  • Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66(4), 563–575. https://doi.org/10.1007/BF02296196 First citation in articleCrossrefGoogle Scholar

  • Spurk, D., Hirschi, A., Wang, M., Valero, D., & Kauffeld, S. (2020). Latent profile analysis: A review and “how to” guide of its application within vocational behavior research. Journal of Vocational Behavior, 120, 1–21. https://doi.org/10.1016/j.jvb.2021.103559 First citation in articleCrossrefGoogle Scholar

  • Tseng, H. M., Liu, F. C., & West, M. A. (2009). The Team Climate Inventory (TCI) a psychometric test on a Taiwanese sample of work groups. Small Group Research, 40(4), 465–482. https://doi.org/10.1177/1046496409334145 First citation in articleCrossrefGoogle Scholar