Skip to main content
Original Articles and Reviews

Genetics and Cognition

The Impact for Psychologists in Applied Settings

Published Online:https://doi.org/10.1027/1016-9040/a000007

How genes contribute to cognition is a perennial question for psychologists and geneticists. In the early 21st century, familial studies, including twin studies, supported the theory that genetic variations contribute to differences in cognition, but have been of little practical use to clinical and educational practitioners as no individual predictions can be made using such data; heritability cannot predict the impact of environmental factors or intervention programs. With the sequencing of animal genomes and the development of molecular genetics, new methodologies have been developed: gene targeting (replacing a functional gene with a neutral gene by homologous recombination), transgenesis (overexpressing one gene or a set of genes from one species in another species), and genome-wide scans and quantitative trait loci mapping (a strategy for identifying chromosomal regions involved in complex traits). Association studies can be performed to find associations between allelic forms and variations in IQ. Genes linked to “normal” variations in cognition have been detected but for the moment such discoveries have had no direct applications in a clinical setting; the number of genes identified as being linked to intellectual impairment has increased rapidly. Links have been reported between chromosomal deletions and triplications and behavioral phenotypes. The identification of mechanisms involved in genetic diseases should have long-term consequences on educational and/or psychological support programs as well as on health care. Psychologists need to keep up to date on advances in research establishing relationships between genetics and intellectual disability and will thus be able to refer children with cognitive impairments to specialized care services.

References

  • Boomsma, D., Busjahn, A., Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3, 872–882. First citation in articleCrossrefGoogle Scholar

  • Bouchard, T., McGue, M. (1981). Familial studies of intelligence: A review. Science, 212, 1055–1059. First citation in articleCrossrefGoogle Scholar

  • Buhot, M. C., Wolff, M., Benhassine, N., Costet, P., Hen, R., Segu, L. (2003). Spatial learning in the 5-HT1B receptor knockout mouse: Selective facilitation/impairment depending on cognitive demand. Learning & Memory, 10, 466–477. First citation in articleCrossrefGoogle Scholar

  • Butcher, L. M., Meaburn, E., Knight, J., Sham, P. C., Schalkwyk, L. C., Craig, I. W., et al. (2005). SNPs, microarrays and pooled DNA: Identification of four loci associated with mild mental impairment in a sample of 6000 children. Human Molecular Genetics, 14, 1315–1325. First citation in articleCrossrefGoogle Scholar

  • Carlier, M., Ayoun, C. (2007). Déficiences intellectuelles et intégration sociale. Wavre, Belgique: Mardaga. First citation in articleGoogle Scholar

  • Carlier, M., Nosten-Bertrand, M., Michard-Vahnée, Ch. (1992). The separation of genetic from maternal effects. In D. Goldowicz, D. Wahlsten, R. E. Wimer (Eds.), Techniques for the genetic analysis of brain and behavior: Focus on the mouse (pp. 111–126). Amsterdam: Elsevier. First citation in articleGoogle Scholar

  • Carlier, M., Roubertoux, P., Pastoret, C. (1991). The Y chromosome effect on intermale aggression in mice depends on the maternal environment. Genetics, 129, 231–236. First citation in articleGoogle Scholar

  • Carlier, M., Roubertoux, P. L., Wahlsten, D. (1999). Maternal effects in behavior genetic analysis. In B. Jones, P. Mormède (Eds.), Neurobehavioral genetics: Methods and applications (pp. 187–197). Boca Raton: CRC Press. First citation in articleCrossrefGoogle Scholar

  • Carlier, M., Spitz, E. (2004). Failure to obtain reliable determination of chorion type using parent information: Confirmation with French data. Twin Research, 7, 13–15. First citation in articleCrossrefGoogle Scholar

  • Caspi, A., Williams, B., Kim-Cohen, J., Craig, I. W., Milne, B. J., Poultron, R., et al. (2007). Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proceedings of the National Academy of Science USA. 18860–18865. First citation in articleCrossrefGoogle Scholar

  • Chabrol, B., Girard, N., N’Guyen, K., Gérard, A., Carlier, M., Villard, L., Philip, N. (2005). Delineation of the clinical phenotype associated with OPHN-1 mutations based on the clinical and neuropsychological evaluation of three families. American Journal of Medical Genetics, A. 138, 314–317. First citation in articleCrossrefGoogle Scholar

  • Chapillon, P., Patin, V., Roy, V., Vincent, A., Caston, J. (2002). Effects of pre- and postnatal stimulation on developmental, emotional, and cognitive aspects in rodents: A review. Developmental Psychobiology, 41, 373–387. First citation in articleCrossrefGoogle Scholar

  • Corey, L. A., Nance, W. E., Kang, K. W., Christian, J. C. (1979). Effect of type of placentation on birthweight and its variability in monozygotic and dizygotic twins. Acta Geneticae Medicae et Gemellologiae, 28, 41–50. First citation in articleGoogle Scholar

  • Coudé, F. X., Mignot, C., Lyonnet, S., Munnich, A. (2006). Academic impairment is the most frequent complication of neurofibromatosis type-1 (NF1) in children. Behavior Genetics, 36, 604–660. First citation in articleCrossrefGoogle Scholar

  • De Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., Nilsson, L.-G. (2004). COMT gene polymorphism is associated with declarative memory in adulthood ans old age. Behavior Genetics, 34, 533–539. First citation in articleCrossrefGoogle Scholar

  • De Geus, J. C., Boomsma, D. I. (2001). A genetic neuroscience approach to human cognition. European Psychologist, 6, 241–253. First citation in articleLinkGoogle Scholar

  • Denenberg, V. H., Hopligh, B. J., Mobraaten, L. E. (1998). The uterine environment enhances cognitive competence. Neuro-Report, 9, 619–623. First citation in articleGoogle Scholar

  • Devlin, E., Daniels, M., Roeder, K. (1997). The heritability of IQ. Nature, 388, 468–470. First citation in articleCrossrefGoogle Scholar

  • Erhman, L., Parsons, P. A. (1976). The Genetics of Behaviour. Sunderland, Mass: Sinauer Associated Inc. First citation in articleGoogle Scholar

  • Erlenmeyer-Kimling, L., Jarvick, L. F. (1963). Genetics and intelligence: A review. Science, 142, 1477–1479. First citation in articleCrossrefGoogle Scholar

  • Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., Hewitt, J. K. (2008). Individual differences in executive function are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201–225. First citation in articleCrossrefGoogle Scholar

  • Fuller, L., Thompson, W. R. (1960). Behavior genetics. New York, NY: Wiley. First citation in articleGoogle Scholar

  • Gould, S. J. (1981). Mismeasure of Man. New York, NY: Norton & Co. (Revised 1996). Traduit en Français sous le titre La Mal-Mesure de l’Homme (1997). Paris: Odile Jacob. First citation in articleGoogle Scholar

  • Gutknecht, L., Spitz, E., Carlier, M. (1999). Long term effect of placental type on anthropometrical and psychological traits among monozygotic twins: A follow up study. Twin Research, 2, 212–217. First citation in articleGoogle Scholar

  • Haworth, C. M., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J., van Beijsterveldt, C. E., Plomin, R. (2009). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry. Advance Online Publication. doi:10.1038/mp.2009.55. First citation in articleGoogle Scholar

  • Hirsch, J. (1967a). Behavior-genetic analysis. New York, NY: McGraw-Hill Book Company. First citation in articleGoogle Scholar

  • Hirsch, J. (1967b). Behavior-genetic, or “experimental”, analysis: The challenge of science versus the lure of technology. American Psychologist, 22, 118–130. First citation in articleCrossrefGoogle Scholar

  • Hirsch, J. (1975). Jensenism: The bankruptcy of “Science” without scholarship. Educational Theory, 25, 3–27. First citation in articleCrossrefGoogle Scholar

  • Holzinger, K. J. (1929). The relative effect of nature and nurture influences on twins differences. Journal of Educational Psychology, 29, 345–348. First citation in articleGoogle Scholar

  • Jacobs, N., Van Gestel, S., Derom, C., Thierry, E., Vernon, P., Derom, R., et al. (2001). Heritability estimates of intelligence in twins: Effect on chorion type. Behavior Genetics, 31, 209–217. First citation in articleCrossrefGoogle Scholar

  • Liew, S. H. M., Elsner, H., Spector, T. D., Hammond, C. (2005). The first ‘classical’ twin sutdy? Analysis of refractive error using monozygotic and dygotic twins published in 1922. Twin Research and Human Genetics, 8, 198–200. First citation in articleGoogle Scholar

  • Loos, R. J., Beunen, G., Fagard, R., Derom, C., Vlietinck, R. (2001). The influence of zygosity and chorion type on fat distribution in young adult twins consequences for twin studies. Twin Research, 4, 356–364. First citation in articleCrossrefGoogle Scholar

  • Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159, 652–654. First citation in articleCrossrefGoogle Scholar

  • Martin, N., Boomsma, D., Machin, G. (1997). A twin-pronged attack on complex traits. Nature Genetics, 17, 387–392. First citation in articleCrossrefGoogle Scholar

  • Matynia, A., Kushner, S. A., Silva, A. J. (2002). Genetic approaches to molecular and cellular cognition: A focus on LTP and learning and memory. Annual Review of Genetics, 36, 687–720. First citation in articleCrossrefGoogle Scholar

  • Morley, K. I., Montgomery, G. W. (2001). The genetics of cognitive processes: Candidate genes in humans and animals. Behavior Genetics, 31, 511–531. First citation in articleCrossrefGoogle Scholar

  • Neale, M. C., Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Kluwer Academic Publishers: Dordrecht. First citation in articleCrossrefGoogle Scholar

  • Nithianantharajah, J., Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Review Neuroscience, 7, 697–709. First citation in articleCrossrefGoogle Scholar

  • Plomin, R. (2006). The quest for quantitative trait loci associated with intelligence. Intelligence, 34, 513–526. First citation in articleCrossrefGoogle Scholar

  • Plomin, R., Colledge, E. (2001). Genetics and psychology: Beyond heritability. European Psychologists, 6, 229–240. First citation in articleLinkGoogle Scholar

  • Plomin, R., Daniels, D. (1987). Why are children in the same family so different from one another?. Behavioral and Brain Sciences, 10(1), 1–60. First citation in articleCrossrefGoogle Scholar

  • Plomin, R., DeFries, J. C., McClearn, G. E., Rutter, M. (1980). Behavioral Genetics. New York, NY: Freeman and Co. First citation in articleGoogle Scholar

  • Plomin, R., Turic, D. M., Hill, L., Turic, D. E., Stephens, M., Williams, J., et al. (2004). A functional polymorphism in the succinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. Molecular Psychiatry, 9, 582–586. First citation in articleCrossrefGoogle Scholar

  • Posthuma, D., Beem, A. L., de Geus, E. J. C., van Baal, G. C. M., von Hjelmborg, J. B., Iachine, I., Boomsma, D. I. (2003). Theory and practice in quantitative genetics. Twin Research, 6, 361–376. First citation in articleCrossrefGoogle Scholar

  • Posthuma, D., de Geus, E. J. C. (2006). Progress in the molecular-genetic study of intelligence. Current Direction in Psychological Science, 15, 151–155. First citation in articleCrossrefGoogle Scholar

  • Posthuma, D., Luciano, M., de Geus, E. J. C., Wright, M. J., Slagboom, P. E., Montgomery, G. W., et al. (2005). A genowide scan for intelligence identifies quantitative trait loci on 2q and 6p. American Journal of Human Genetics, 77, 318–326. First citation in articleCrossrefGoogle Scholar

  • Race, J. P., Townsend, G. C., Hughes, T. E. (2006). Chorion type, birthweight discordance and tooth-size variability in Australian monozygotic twins. Twins Research and Human Genetics, 9, 285–291. First citation in articleCrossrefGoogle Scholar

  • Radtke, H. B., Sebold, C. D., Allison, C., Haidle, J. K., Schneider, G. (2007). Neurofibromatosis Type I in genetic counseling practise: Recommendations of the National Society of Genetic Counsellors. Journal of Genetic Counseling, 16, 387–407. First citation in articleCrossrefGoogle Scholar

  • Reissler, R. H. (1962). Parental handling in two strains of mice reared by foster parents. Science, 137, 129–130. First citation in articleCrossrefGoogle Scholar

  • Richardson, K., Norgate, S. (2005). The equal environments assumption of classical twin studies may not hold. British Journal of Educational Psychology, 75, 339–350. First citation in articleCrossrefGoogle Scholar

  • Rose, C., Röhl, F.-W., Hanke, J., Schwegler, H., Yilmazer-Hanke, D. (2008). Maternal and genetic effects on the acoustic startle reflex and its sensitization in C3H/HeN, DBA/2JHd and NMRI mice following blastocyst transfer. Behavior Genetics, 38, (pp. 596–611). . First citation in articleCrossrefGoogle Scholar

  • Rose, R. J. (2006). Genetic and environmental influences on social behaviour and health. In L. Pulkkinen, J. Kaprio, R. J. Rose (Eds.), Socioemotional development and health from adolescence to adulthood (pp. 56–75). New York, NY: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Rose, R. J., Boughman, J. A., Corey, L. A., Nance, W. E., Christian, J. C., Kang, K. W. (1980). Data from kinships of monozygotic twins indicate maternal effects on verbal intelligence. Nature, 283, 375–377. First citation in articleCrossrefGoogle Scholar

  • Rose, R. J., Uchida, I. A., Christian, J. C. (1981). Placentation effects on cognitive resemblance of adult monozygotes. Twin research 3: Intelligence, personality, and development (pp. 35–41). New York, NY: Allen Liss. First citation in articleGoogle Scholar

  • Roubertoux, P. L. (2004). Existe-t-il des gènes du comportement? Paris: Odile Jacob. First citation in articleGoogle Scholar

  • Roubertoux, P. L., Capron, C. (1990). Are intelligence differences hereditarily transmitted?. C.P.C: Cahiers de Psychologie Cognitive European Bulletin of Cognitive Psychology, 10, 555–694. First citation in articleGoogle Scholar

  • Roubertoux, P., Carlier, M. (1976). Génétique et comportement. Paris: Masson. First citation in articleGoogle Scholar

  • Roubertoux, P., Carlier, M. (1978). Intelligence : différences individuelles, facteurs génétiques, facteurs d’environnement et interaction entre génotype et environnement. Annales de Biologie Clinique, 36, 101–112. First citation in articleGoogle Scholar

  • Roubertoux, M., Carlier, M. (2007). From DNA to the mind. EMBO Reports, 8. Science & Society Special Issue S7–S11. First citation in articleGoogle Scholar

  • Roubertoux, P. L., Guillot, P. V., Mortaud, S., Pratte, M., Jamon, M., Cohen-Salmon, C., Tordjman, S. (2005). Attack behaviors in mice: From factorial structure to quantitative trait loci mapping. European Journal of Pharmacology, 526, 172–185. First citation in articleCrossrefGoogle Scholar

  • Roubertoux, P. L., Jamon, M., Carlier, M. (in press). Brain development, genes, epigenetic events and maternal environments. In M. Blumberg (Ed.), Neurobiology of development. Hoboken, NJ: Wiley. First citation in articleGoogle Scholar

  • Roubertoux, P. L., Kerdelhué, B. (2006). Trisomy 21: From chromosomes to mental retardation. Behavior Genetics, 36, 346–354. First citation in articleCrossrefGoogle Scholar

  • Roubertoux, P. L., Sluyter, F., Carlier, M., Marcet, B., Maarouf-Veray, F., Cherif, C., et al. (2003). Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nature Genetics, 35, 65–69. First citation in articleCrossrefGoogle Scholar

  • Saudou, F., Amara, D. A., Dierich, A., Lemeur, M., Ramboz, S., Segu, L., et al. (1994). Enhanced aggressive behavior in mice lacking 5- HT1B receptor. Science, 265, 1875–1878. First citation in articleCrossrefGoogle Scholar

  • Scarr, S. (1968). Environmental bias in twin studies. Eugenic Quarterly, 15(1), 34–40. First citation in articleCrossrefGoogle Scholar

  • Scerif, G., Karmiloff-Smith, A. (2005). The dawn of cognitive genetics? Crucial developmental caveats. Trends in Cognitive Sciences, 3, 126–135. First citation in articleCrossrefGoogle Scholar

  • Sérégaza, Z., Roubertoux, P. L., Jamon, M., Soumireu-Mourat, B. (2006). Mouse models of cognitive disorders in trisomy 21: A review. Behavior Genetics, 36, 377–386. First citation in articleCrossrefGoogle Scholar

  • Spitz, E., Carlier, M., Vacher-Lavenu, M.-C., Reed, T., Moutier, R., Busnel, M.-C., Roubertoux, P. L. (1996). Long term effect of prenatal heterogeneity among monozygotes. CPC Cahiers de Psychology Cognitive Current Psychology of Cognition, 15, 283–308. First citation in articleGoogle Scholar

  • Tryon, R. C. (1934). Individual differences. In F. A. Moss (Ed.) Comparative psychology, pp. 409–445. Englewood Cliffs, NJ: Prentice-Hall (Reprinted in Behavior-Genetic Analysis, 32–63, by J. Hirch, & T. McGuire, 1982). First citation in articleCrossrefGoogle Scholar

  • Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623–628. First citation in articleCrossrefGoogle Scholar

  • Turri, M. G., Henderson, N. D., DeFries, J. C., Flint, J. (2001). Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics, 158, 1217–1226. First citation in articleGoogle Scholar

  • Vlietinck, R., Derom, R., Neale, M. C., Maes, H., Van Loon, H., Derom, C., Thiery, M. (1989). Genetic and environmental variation in the birth weight of twins. Behavior Genetics, 19, 51–61. First citation in articleCrossrefGoogle Scholar

  • Yeatman, F. R., Hirsch, J. (1971). Attempted replication of, and selective breeding for, instrumental conditioning of Drosophila melanogaster . Animal Behaviour, 19, 454–462. First citation in articleCrossrefGoogle Scholar