Skip to main content
Research Article

Can Neuroscience Provide a New Foundation for the Rorschach Variables?

Published Online:https://doi.org/10.1027/1192-5604/a000147

Abstract. Recent progress in neuroscience has made it possible to use neurophysiological techniques to validate and deepen the interpretation of Rorschach variables. The aim of this article is to review the results from Rorschach studies using the neurophysiological approach to discuss the consistencies and inconsistencies between the different results, and then to consider the future direction of Rorschach research in this area. We also provide unpublished data to complement the picture from peer-reviewed studies. Two main approaches to neuropsychological studies on the Rorschach exist. One approach is to measure brain activities directly during the Rorschach administration; a series of studies using multiple neurophysiological methods revealed activation of the mirror neuron system with relation to human movement responses. Another possible approach is to investigate whether individual differences in Rorschach scores can be explained by neurophysiological measurements during the administration of another psychological task. This article reviews how these two approaches provide novel insights into the Rorschach Test.

References

  • Acklin, M. W., & Wu-Holt, P. (1996). Contributions of cognitive science to the Rorschach technique: Cognitive and neuropsychological correlates of the response process. Journal of Personality Assessment, 67(1), 169–178. First citation in articleCrossrefGoogle Scholar

  • Ando, A., Salatino, A., Giromini, L., Ricci, R., Pignolo, C., Cristofanelli, S., Ferro, L., Viglione, D. J., & Zennaro, A. (2015). Embodied simulation and ambiguous stimuli: The role of the mirror neuron system. Brain Research, 1629, 135–142. First citation in articleCrossrefGoogle Scholar

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2008). Right temporopolar activation associated with unique perception. NeuroImage, 41(1), 145–152. First citation in articleCrossrefGoogle Scholar

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2010). Amygdalar enlargement associated with unique perception. Cortex, 46(1), 94–99. First citation in articleCrossrefGoogle Scholar

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2010). Amygdalar modulation of frontotemporal connectivity during the inkblot test. Psychiatry Research: Neuroimaging, 182(2), 103–110. First citation in articleCrossrefGoogle Scholar

  • Bartel, G., Marko, M., Rameses, I., Lamm, C., & Riečanský, I. (2020). Left prefrontal cortex supports the recognition of meaningful patterns in ambiguous stimuli. Frontiers in Neuroscience, 14, Article 152. First citation in articleCrossrefGoogle Scholar

  • Blair, R. J. R., Morris, J. S., Frith, C. D., Perrett, D. I., & Dolan, R. J. (1999). Dissociable neural responses to facial expressions of sadness and anger. Brain, 122(5), 883–893. First citation in articleCrossrefGoogle Scholar

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222. First citation in articleCrossrefGoogle Scholar

  • Chong, T., Cunningham, R., Williams, M., Kanwisher, N., & Mattingly, J. (2008). MRI adaption reveals mirror neurons in human inferior parietal cortex. Current Biology, 18, 1576–1580. First citation in articleCrossrefGoogle Scholar

  • Christoff, K., & Gabrieli, J. D. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28(2), 168–186. First citation in articleGoogle Scholar

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. First citation in articleCrossrefGoogle Scholar

  • Derryberry, D. (1990). Right hemisphere sensitivity to feedback. Neuropsychologia, 28(12), 1261–1271. First citation in articleCrossrefGoogle Scholar

  • Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both observed and executed movements. Journal of Neurophysiology, 98(3), 1415–1427. First citation in articleCrossrefGoogle Scholar

  • di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180. First citation in articleCrossrefGoogle Scholar

  • Exner, J. E. (2003). The Rorschach: A comprehensive system: Vol. 1. Basic foundations (4th ed.). Wiley. First citation in articleGoogle Scholar

  • Exner, J. E. Jr., Colligan, S. C., Boll, T. J., Stischer, B., & Hillman, L. (1996). Rorschach findings concerning closed head injury patients. Assessment, 3(3), 317–326. First citation in articleCrossrefGoogle Scholar

  • Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: A functional imaging study of “theory of mind” in story comprehension. Cognition, 57(2), 109–128. First citation in articleCrossrefGoogle Scholar

  • Frith, C. D., & Frith, U. (1999). Interacting minds – a biological basis. Science, 286(5445), 1692–1695. First citation in articleCrossrefGoogle Scholar

  • Giromini, L., Porcelli, P., Viglione, D. J., Parolin, L., & Pineda, J. A. (2010). The feeling of movement: EEG evidence for mirroring activity during the observations of static, ambiguous stimuli in the Rorschach cards. Biological Psychology, 85(2), 233–241. First citation in articleCrossrefGoogle Scholar

  • Giromini, L., Viglione, D. J. Jr., Pineda, J. A., Porcelli, P., Hubbard, D., Zennaro, A., & Cauda, F. (2019). Human movement responses to the Rorschach and mirroring activity: An fMRI study. Assessment, 26(1), 56–69. First citation in articleCrossrefGoogle Scholar

  • Giromini, L., Viglione, D. J., Vitolo, E., Cauda, F., & Zennaro, A. (2019). Introducing the concept of neurobiological foundation of Rorschach responses using the example of oral dependent language. Scandinavian Journal of Psychology, 60(6), 528–538. First citation in articleCrossrefGoogle Scholar

  • Giromini, L., Viglione, D. J. Jr., Zennaro, A., & Cauda, F. (2017). Neural activity during production of Rorschach responses: An fMRI study. Psychiatry Research: Neuroimaging, 262, 25–31. First citation in articleCrossrefGoogle Scholar

  • Hiraishi, H., Haida, M., Matsumoto, M., Hayakawa, N., Inomata, S., & Matsumoto, H. (2012). Differences of prefrontal cortex activity between picture-based personality tests: A near-infrared spectroscopy study. Journal of Personality Assessment, 94(4), 366–371. First citation in articleCrossrefGoogle Scholar

  • Ishibashi, M., Uchiumi, C., Jung, M., Aizawa, N., Makita, K., Nakamura, Y., & Saito, D. N. (2016). Differences in brain hemodynamics in response to achromatic and chromatic cards of the Rorschach. Rorschachiana, 37(1), 41–57. https://doi.org/10.1027/1192-5604/a000076 First citation in articleLinkGoogle Scholar

  • Jimura, K., Konishi, S., Asari, T., & Miyashita, Y. (2009). Involvement of medial prefrontal cortex in emotion during feedback presentation. NeuroReport, 20(9), 886–890. First citation in articleCrossrefGoogle Scholar

  • Jimura, K., Konishi, S., Asari, T., & Miyashita, Y. (2010). Temporal pole activity during understanding other persons’ mental states correlates with neuroticism trait. Brain Research, 1328, 104–112. First citation in articleCrossrefGoogle Scholar

  • Jimura, K., Konishi, S., & Miyashita, Y. (2004). Dissociable concurrent activity of lateral and medial frontal lobe during negative feedback processing. NeuroImage, 22(4), 1578–1586. First citation in articleCrossrefGoogle Scholar

  • Jimura, K., Konishi, S., & Miyashita, Y. (2009). Temporal pole activity during perception of sad faces, but not happy faces, correlates with neuroticism trait. Neuroscience Letters, 453(1), 45–48. First citation in articleCrossrefGoogle Scholar

  • Kaplan, J. T., & Zaidel, E. (2001). Error monitoring in the hemispheres: The effect of lateralized feedback on lexical decision. Cognition, 82(2), 157–178. First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T., Brammer, M. J., Levelt, W., Bartels, M., & McGuire, P. K. (2004). Pausing for thought: Engagement of left temporal cortex during pauses in speech. NeuroImage, 21(1), 84–90. First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T., Brammer, M. J., Williams, S. C., & McGuire, P. K. (2000). Lexical retrieval during fluent speech production: An fMRI study. Neuroreport, 11(18), 4093–4096. First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T., Liddle, P., Brammer, M., Murray, R., & McGuire, P. (2003). Neural correlates of “negative” formal thought disorder. Der Nervenarzt, 74(9), 748–754. First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T., Liddle, P. F., Brammer, M. J., Williams, S. C., Murray, R. M., & McGuire, P. K. (2001). Neural correlates of formal thought disorder in schizophrenia: Preliminary findings from a functional magnetic resonance imaging study. Archives of General Psychiatry, 58(8), 769–774. First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T., Liddle, P. F., Brammer, M. J., Williams, S. C. R., Murray, R. M., & McGuire, P. K. (2002). Reversed lateralization of temporal activation during speech production in thought disordered patients with schizophrenia. Psychological Medicine, 32(3), 439. First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T., Oh, T. M., Brammer, M. J., & McGuire, P. K. (2005). Neural correlates of syntax production in schizophrenia. The British Journal of Psychiatry, 186(3), 209–214. First citation in articleCrossrefGoogle Scholar

  • Klopfer, B. (1938). The shading responses. Rorschach Research Exchange, 2(3), 76–79. First citation in articleCrossrefGoogle Scholar

  • Konishi, S., Hayashi, T., Uchida, I., Kikyo, H., Takahashi, E., & Miyashita, Y. (2002). Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proceedings of the National Academy of Sciences, 99(11), 7803–7808. First citation in articleCrossrefGoogle Scholar

  • Luciani, M., Cecchini, M., Altavilla, D., Palumbo, L., Aceto, P., Ruggeri, G., Vecchio, F., & Lai, C. (2014). Neural correlate of the projection of mental states on the not-structured visual stimuli. Neuroscience Letters, 573, 24–29. First citation in articleCrossrefGoogle Scholar

  • Mazhirina, K. G., Dzhafarova, O. A., Kozlova, L. I., Pervushina, O. N., Fedorov, A. A., Bliznyuk, M. V., Khoroshilov, B. M., Savelov, A. A., Petrovskii, E. D., & Shtark, M. B. (2020). The relationships between cortical activity while observing images featuring different degrees of ambiguity and ambiguity tolerance. Bulletin of Experimental Biology and Medicine, 169(4), 421–425. First citation in articleCrossrefGoogle Scholar

  • Mengotti, P., Corradi-Dell’Acqua, C., & Rumiati, R. I. (2012). Imitation components in the human brain: An fMRI study. NeuroImage, 59(2), 1622–1630. First citation in articleCrossrefGoogle Scholar

  • Meyer, G. J. (2016). Neuropsychological factors and Rorschach performance in children. Rorschachiana, 37(1), 7–27. https://doi.org/10.1027/1192-5604/a000074 First citation in articleLinkGoogle Scholar

  • Meyer, G. J., Erard, R. E., Erdberg, P., Mihura, J. L., & Viglione, D. J. (2011). Rorschach Performance Assessment System: Administration, coding, interpretation, and technical manual. Rorschach Performance Assessment Systems LLC. First citation in articleGoogle Scholar

  • Mihura, J. L., Meyer, G. J., Dumitrascu, N., & Bombel, G. (2013). The validity of individual Rorschach variables: systematic reviews and meta-analyses of the comprehensive system. Psychological Bulletin, 139(3), 548–605. First citation in articleCrossrefGoogle Scholar

  • Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21(19), 7733–7741. First citation in articleCrossrefGoogle Scholar

  • Muzio, E. (2016). Inkblots and neurons: Correlating typical cognitive performance with brain structure and function. Rorschachiana, 37(1), 1–6. https://doi.org/10.1027/1192-5604/a000073 First citation in articleLinkGoogle Scholar

  • Muzio, E., Andronikof, A., David, J. P., & Di Menza, C. (2001). L’intérêt du test du Rorschach (Système Intégré) dans l’évaluation psychométrique en gériatrie: Exemple de la démence de type Alzheimer [The advantage of the Rorschach Test (Comprehensive System) in the psychometric assessment in geriatrics: The example of dementia of the Alzhheimer type]. La Revue de Gériatire, 26(2), 121–130. First citation in articleGoogle Scholar

  • Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(7), 1718–1731. First citation in articleCrossrefGoogle Scholar

  • Ota, M., Obu, S., Sato, N., & Asada, T. (2011). Neuroimaging study in subjects at high risk of psychosis revealed by the Rorschach Test and first-episode schizophrenia. Acta Neuropsychiatrica, 23(3), 125–131. First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A., & Hecht, E. (2009). Mirroring and mu rhythm involvement in social cognition: Are there dissociable subcomponents of theory of mind? Biological Psychology, 80(3), 306–314. First citation in articleCrossrefGoogle Scholar

  • Piotrowski, Z. A. (1957). Perceptanalysis: A fundamentally reworked, expanded, and systematized Rorschach method. Macmillan. First citation in articleGoogle Scholar

  • Porcelli, P., Giromini, L., Parolin, L., Pineda, J. A., & Viglione, D. J. (2013). Mirroring activity in the brain and movement determinant in the Rorschach test. Journal of Personality Assessment, 95(5), 444–456. First citation in articleCrossrefGoogle Scholar

  • Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515–526. First citation in articleCrossrefGoogle Scholar

  • Rorschach, H. (1921). Psychodiagnostik: Methodik und Ergebnisse eines warhrnehmungsdiagnostischen Experiments (Deutenlassen von Zufallsformen) (Vol. 2) [Psychodiagnostics: Methodology and results of a perception diagnostic experiment (allowing random forms to be interpreted)]. Ernst Bircher Verlag. First citation in articleGoogle Scholar

  • Rowe, A. D., Bullock, P. R., Polkey, C. E., & Morris, R. G. (2001). ‘Theory of mind’ impairments and their relationship to executive functioning following frontal lobe excisions. Brain, 124(3), 600–616. First citation in articleCrossrefGoogle Scholar

  • Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7(5), 499–500. First citation in articleCrossrefGoogle Scholar

  • Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835–1842. First citation in articleCrossrefGoogle Scholar

  • Tager-Flusberg, H., & Sullivan, K. (2000). A componential view of theory of mind: Evidence from Williams syndrome. Cognition, 76(1), 59–90. First citation in articleCrossrefGoogle Scholar

  • Ullsperger, M., & Von Cramon, D. Y. (2003). Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. Journal of Neuroscience, 23(10), 4308–4314. First citation in articleCrossrefGoogle Scholar

  • Vitolo, E., Giromini, L., Viglione, D. J., Cauda, F., & Zennaro, A. (2020). Complexity and cognitive engagement in the Rorschach Task: An fMRI Study. Journal of Personality Assessment, 1–11. Advance online publication. First citation in articleGoogle Scholar

  • Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150–159. First citation in articleCrossrefGoogle Scholar

  • Weinberger, D. R., & Berman, K. F. (1988). Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophrenia Bulletin, 14(2), 157–168. First citation in articleCrossrefGoogle Scholar

  • Wheeler, M. E., & Buckner, R. L. (2003). Functional dissociation among components of remembering: Control, perceived oldness, and content. Journal of Neuroscience, 23(9), 3869–3880. First citation in articleCrossrefGoogle Scholar

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670. First citation in articleCrossrefGoogle Scholar

  • Zillmer, E. A., & Perry, W. (1996). Cognitive-neuropsychological abilities and related psychological disturbance: A factor model of neuropsychological, Rorschach, and MMPI indices. Assessment, 3(3), 209–224. First citation in articleCrossrefGoogle Scholar