Skip to main content
Articles

Resting Brain Asymmetry and Affective Reactivity

Aggregated Data Support the Right-Hemisphere Hypothesis

Published Online:https://doi.org/10.1027/1614-0001.26.3.139

Abstract. Neuropsychological evidence has given rise to alternative models on brain asymmetry in emotion, each with different implications concerning the biological basis of individual differences in affective responses. The present study tested these implications. Resting EEG and self-reported emotions after the presentation of film clips were collected on four occasions of measurement. Subjects with greater right-sided and smaller left-sided cortical activity reported greater intensities of felt emotions after the presentation of films irrespective of valence. This finding is in line with a recent formulation of the right-hemisphere hypothesis, which proposes that the right hemisphere may play an important role in the automatic generation of emotional responses, whereas the left hemisphere may be involved in the control and modulation of emotional reactions.

References

  • Allen, J.J.B., Coan, J.A., Nazarian, M. (2004). Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biological Psychology, 67, 183–218 First citation in articleCrossrefGoogle Scholar

  • Aiken, L.S., West, S.G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park: Sage First citation in articleGoogle Scholar

  • Alemà, G., Donini, G. (1960). Sulle modificazioni cliniche ed elettroencefalografiche da introduzione intracarotidea di iso-amil-etil-barbiturato di sodio nell'uomo. Bolletino della Società italiana di biologia sperimentale, 36, 900– 904 First citation in articleGoogle Scholar

  • Babinski, J. (1914). Contribution a l'etude des trouble mentaux dans l'hemisplegie organique cerebrale (anosognosie). [Contribution to the study of mental disease in organic cerebral hemiplegia (anosognosia)] Revue Neurologique, 27, 845–848 First citation in articleGoogle Scholar

  • Barber, B., McKenzie, S., Helme, R. (1997). A study of brain electrical responses to music using quantitative electroencephalography (QEEG). International Journal of Arts Medicine, 5, 12–21 First citation in articleGoogle Scholar

  • Blom, J.B., Anneveldt, M. (1982). An electrocap tested. Electroencephalography and Clinical Neurophysiology, 54, 591–594 First citation in articleCrossrefGoogle Scholar

  • Bloomfield, P. (1976). Fourier analysis of time series: An introduction. New York: Wiley First citation in articleGoogle Scholar

  • Borod, J.C. (1993). Cerebral mechanisms underlying facial, prosodic, and lexical emotional expression: A review of neuropsychological studies and methodological issues. Neuropsychology, 7, 445–463 First citation in articleCrossrefGoogle Scholar

  • Borod, J.C., Bloom, R.L., Brickman, A.M., Nakhutina, L., Curko, E.A. (2002). Emotional processing deficits in individuals with unilateral brain damage. Applied Neuropsychology, 9, 23–36 First citation in articleCrossrefGoogle Scholar

  • Borod, J.C., Haywood, C.S., Koff, E. (1997). Neuropsychological aspects of facial asymmetry during emotional expression: A review of the normal adult literature. Neuropsychological Reviews, 7, 41–60 First citation in articleCrossrefGoogle Scholar

  • Borod, J.C., Rorie, K.D., Haywood, C.S., Andelman, F., Obler, L.K., Welkowitz, J., Bloom, r.L., Tweedy, J.R. (1996). Hemispheric specialization for discourse reports of emotional experiences: Relationships to demographic, neurological, and perceptual variables. Neuropsychologia, 34, 351–359 First citation in articleCrossrefGoogle Scholar

  • Buck, R. (1984). The communication of emotion. New York: Guilford First citation in articleGoogle Scholar

  • Chatrian, G.E., Lettich, E., Nelson, P.L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG Technology, 25, 83–92 First citation in articleCrossrefGoogle Scholar

  • Coan, J.A., Allen, J.J.B. (2003). The state and trait nature of frontal EEG asymmetry in emotion. In K. Hughdahl & R.J. Davidson (Eds.), Brain asymmetry (2nd ed. pp. 565-615). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Coan, J.A., Allen, J.J.B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67, 7–49 First citation in articleCrossrefGoogle Scholar

  • Cohen, J., Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences . (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum First citation in articleGoogle Scholar

  • Cook, I.A., O'Hara, R., Uijtdehaage, S.H.J., Mandelkern, M., Leuchter, A.F. (1998). Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalography and Clinical Neurophysiology, 107, 408–414 First citation in articleCrossrefGoogle Scholar

  • Costa, P.T., McCrae, R.R. (1992). Trait psychology comes of age. In T.B. Sonderegger (Ed.), Nebraska symposium on motivation: Psychology and aging (pp. 169-204). Lincoln, NE: University of Nebraska Press First citation in articleGoogle Scholar

  • Creutzfeldt, O.D. (1995). Cortex ceribri. Performance, structural, and functional organization of the cortex. Oxford: Oxford University Press First citation in articleCrossrefGoogle Scholar

  • Cronbach, L.J., Furby, L. (1970). How should we measure “change,” or should we?. Psychological Bulletin, 74, 68–80 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39, 71–89 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (1992a). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20, 125–151 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (1992b). Emotion and affective style: Hemispheric substrates. Psychological Science, 3, 39–43 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Emotion, 7, 115–138 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (1995). Cerebral asymmetry, emotion, and affective style. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 361-389). Cambridge, MA: The MIT Press First citation in articleGoogle Scholar

  • Davidson, R.J. (1998a). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition and Emotion, 12, 307–330 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (1998b). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35, 607–614 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J. (2000). The functional neuroanatomy of affective style. In R.D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotions (pp. 371-388). New York: Oxford University Press First citation in articleGoogle Scholar

  • Davidson, R.J., Fox, N.A. (1982). Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science, 218, 1235–1236 First citation in articleCrossrefGoogle Scholar

  • Davidson, R.J., Jackson, D.C., Larson, C.L. (2000). Human electroencephalography. In J.T. Cacioppo & L.G. Tassinary (Eds.), Handbook of psychophysiology (2nd ed. pp. 27-52). New York: Cambridge University Press First citation in articleGoogle Scholar

  • Davidson, R.J., Tomarken, A.J. (1989). Laterality and emotion: An electrophysiological approach. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 3, pp. 419-441). Amsterdam: Elsevier First citation in articleGoogle Scholar

  • Denny-Brown, D., Meyer, J.S., Horenstein, D. (1952). The significance of perceptual rivalry resulting from parietal lesions. Brain, 75, 434–471 First citation in articleCrossrefGoogle Scholar

  • Diener, E., Emmons, R.A. (1984). The independence of positive and negative affect. Journal of Personality and Social Psychology, 47, 1105–1117 First citation in articleCrossrefGoogle Scholar

  • Diener, E., Smith, H., Fujita, F. (1995). The personality structure of affect. Journal of Personality and Social Psychology, 69, 130–141 First citation in articleCrossrefGoogle Scholar

  • Epstein, S. (1983). Aggregation and beyond: Some basic issues on the prediction of behavior. Journal of Personality, 51, 360–392 First citation in articleCrossrefGoogle Scholar

  • Frodl, T., Meisenzahl, E.M., Müller, D., Leinsinger, G., Juckel, G., Hahn, K., Moller, H.J., Hegerl, U. (2001). The effect of the skull on event-related P300. Clinical Neurophysiology, 112, 1773–1776 First citation in articleCrossrefGoogle Scholar

  • Gainotti, G. (1969). Réactions “catastrophicques” et manifestations d'indifférance au cours des atteintes cérébrales. [“Catastrophic” reactions and manifestations of indifference in the course of brain damage] Neuropsychologia, 7, 195–204 First citation in articleGoogle Scholar

  • Gainotti, G. (1983). Laterality of affect: The emotional behavior of right and left brain-damaged patients. In M.S. Myslobodsky (Ed.), Hemisyndromes: Psychobiology, neurology, psychiatry (pp. 175-192). New York: Academic Press First citation in articleGoogle Scholar

  • Gainotti, G. (2000). Neuropsychological theories of emotion. In J.C. Borod (Ed.), The neuropsychology of emotion (pp. 214- 236). Oxford: Oxford University Press First citation in articleGoogle Scholar

  • Gainotti, G., Caltagirone, C., Zoccolotti, P. (1993). Left/right and cortical/subcortical dichotomies in the neuropsychological study of human emotions. Cognition and Emotion, 7, 71–93 First citation in articleCrossrefGoogle Scholar

  • Gasser, T., Bächer, P., Möcks, J. (1982). Transformations toward the normal distribution of broad band spectral parameters of the EEG. Electroencephalography and Clinical Neurophysiology, 53, 119–124 First citation in articleCrossrefGoogle Scholar

  • Goldstein, K. (1939). The organism. New York: American Books First citation in articleGoogle Scholar

  • Gotlib, I.H., Ranganath, C., Rosenfeld, J.P. (1998). Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cognition and Emotion, 12, 449–478 First citation in articleCrossrefGoogle Scholar

  • Hagemann, D. (2004). Individual differences in anterior EEG asymmetry: Methodological problems and solutions. Biological Psychology, 67, 157–182 First citation in articleCrossrefGoogle Scholar

  • Hagemann, D., Naumann, E. (2001). The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clinical Neurophysiology, 112, 215–231 First citation in articleCrossrefGoogle Scholar

  • Hagemann, D., Naumann, E., Becker, G., Maier, S., Bartussek, D. (1998). Frontal brain asymmetry and affective style: A conceptual replication. Psychophysiology, 35, 372–388 First citation in articleCrossrefGoogle Scholar

  • Hagemann, D., Naumann, E., Maier, S., Becker, G., Lürken, A., Bartussek, D. (1999). The assessment of affective reactivity using films: Validity, reliability, and sex differences. Personality and Individual Differences, 26, 627–639 First citation in articleCrossrefGoogle Scholar

  • Hagemann, D., Naumann, E., Thayer, J.F. (2001). The quest for the EEG reference revisited: A glance from brain asymmetry research. Psychophysiology, 38, 847–857 First citation in articleCrossrefGoogle Scholar

  • Hagemann, D., Naumann, E., Thayer, J.F., Bartussek, D. (2002). Does resting EEG asymmetry reflect a trait? An application of latent state-trait theory. Journal of Personality and Social Psychology, 82, 619–641 First citation in articleCrossrefGoogle Scholar

  • Harmon-Jones, E., Allen, J.J.B. (1998). Anger and frontal brain asymmetry: EEG asymmetry consistent with approach motivation despite negative affective valence. Journal of Personality and Social Psychology, 74, 1310–1316 First citation in articleCrossrefGoogle Scholar

  • Harmon-Jones, E., Sigelman, J. (2001). State anger and prefrontal brain activity: Evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. Journal of Personality and Social Psychology, 80, 797–803 First citation in articleCrossrefGoogle Scholar

  • Hays, W.L. (1994). Statistics (5th ed.). Fort Worth, TX: Harcourt Brace First citation in articleGoogle Scholar

  • Hecaen, H., Ajuriaguerra, J.d., Massonet, J. (1951). Les troubles visuoconstructifs par lesion parieto-occipital droit. [Visuoconstructive deficits after right parieto-occipital lesion] Encephale, 40, 122–179 First citation in articleGoogle Scholar

  • Heilman, K.M. (2000). Emotional experience: A neurological model. In R.D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 328-344). New York: Oxford University Press First citation in articleGoogle Scholar

  • Heilman, K.M., Bowers, D., Valenstein, E. (1985). Emotional disorders associated with neurological diseases. In K.M. Heilman & E. Valenstein (Eds.), Clinical neurophysiology (pp. 377-402). New York: Oxford University Press First citation in articleGoogle Scholar

  • Heller, W. (1990). The neuropsychology of emotion: Developmental patterns and implications for psychopathology. In N. Stein, B.L. Leventhal, & T. Trabasso (Eds.), Psychological and biological approaches to emotion (pp. 167-211). Hillsdale, NJ: Erlbaum First citation in articleGoogle Scholar

  • Heller, W. (1993). Neuropsychological mechanisms of individual differences in emotion, personality, and arousal. Neuropsychology, 7, 476–489 First citation in articleCrossrefGoogle Scholar

  • Hewig, J., Hagemann, D., Seifert, J., Naumann, E., Bartussek, D. (2004). On the selective relation of frontal cortical asymmetry and anger-out versus anger-control. Journal of Personality and Social Psychology, 87, 926–939 First citation in articleCrossrefGoogle Scholar

  • Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39, 526–530 First citation in articleCrossrefGoogle Scholar

  • Hjorth, B. (1980). Source derivation simplifies topographical EEG interpretation. American Journal of EEG Technology, 20, 121–132 First citation in articleCrossrefGoogle Scholar

  • Hofstee, W.K.B., Ten Berge, J.M.F., Hendriks, A.A.J. (1998). How to score questionnaires. Personality and Individual Differences, 25, 897–909 First citation in articleCrossrefGoogle Scholar

  • Katznelson, R.D. (1981). EEG recording, electrode placement, and aspects of generator localization. In P.L. Nunez (Ed.), Electric fields of the brain (pp. 176-213). New York: Oxford University Press First citation in articleGoogle Scholar

  • Kirk, R.E (1995). Experimental design: Procedures for behavioral sciences (3rd ed.). Pacific Grove,CA: Brooks/Cole First citation in articleGoogle Scholar

  • Kolb, B., Taylor, L. (2000). Facial expression, emotion, and hemispheric organization. In R. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 62-83). New York: Oxford University Press First citation in articleGoogle Scholar

  • Lamendella, J.T. (1977). The limbic system in human communication. In H. Whitaker & H.A. Whitaker (Eds.), Studies in neurolinguistics (Vol. 3, pp. 157-222). New York: Academic Press First citation in articleCrossrefGoogle Scholar

  • Larsen, R.J., Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M.S. Clark (Ed.), Review of personality and social psychology: Emotion (Vol. 13, pp. 25-59). Newbury Park, CA: Sage First citation in articleGoogle Scholar

  • Lehmann, D. (1987). Principles of spatial analysis. In A.S. Gevins & A. Rémond (Eds.), Handbook of electroencephalography and clinical neurophysiology. Methods of analysis of brain electrical signals and magnetic signals (Revised Series ed. Vol. 1, pp. 309-354). Amsterdam: Elsevier First citation in articleGoogle Scholar

  • Leventhal, H. (1979). A perceptual-motor processing model of emotion. In P. Pliner, K. Blankenstein, & I.M. Spigel (Eds.), Perception of emotions in self and others (Vol. 5, pp. 1-46). New York: Plenum First citation in articleCrossrefGoogle Scholar

  • Leventhal, H. (1984). A perceptual motor theory of emotion. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 17, pp. 117-182). New York: Academic Press First citation in articleCrossrefGoogle Scholar

  • Leventhal, H., Scherer, K. (1987). The relationship of emotion to cognition: A functional approach to a semantic controversy. Cognition and Emotion, 1, 3–28 First citation in articleCrossrefGoogle Scholar

  • Ley, R.G., Bryden, H.P. (1981). Consciousness, emotion, and the right hemisphere. In G. Underwood & R. Stevens (Eds.), Aspects of consciousness. Structural issues (Vol. 2, pp. 215-240). London: Academic Press First citation in articleGoogle Scholar

  • Liotti, M., Tucker, D.M. (1995). Emotion in asymmetric corticolimbic networks. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 389-423). Cambridge, MA: The MIT Press First citation in articleGoogle Scholar

  • Nunez, P.L. (1981). Electric fields of the brain. The neurophysics of EEG. New York: Oxford University Press First citation in articleGoogle Scholar

  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113 First citation in articleCrossrefGoogle Scholar

  • Papousek, I., Schulter, G. (1998). Different temporal stability and partial independence of EEG asymmetries from different locations: Implications for laterality research. International Journal of Neuroscience, 93, 87–100 First citation in articleCrossrefGoogle Scholar

  • Perria, L., Rosadini, G., Rossi, G.F. (1961). Determination of side of cerebral dominance with amobarbital. Archives of Neurology, 4, 69–77 First citation in articleCrossrefGoogle Scholar

  • Pfefferbaum, A., Rosenbloom, M. (1987). Skull thickness influences P3 amplitude. Psychopharmacology Bulletin, 23, 493–496 First citation in articleGoogle Scholar

  • Pihan, H., Altenmüller, E., Hertrich, I., Ackermann, H. (2000). Cortical activation patterns of affective speech processing depend on concurrent demands on the subvocal rehearsal system: A DC-potential study. Brain, 123, 2338–2349 First citation in articleCrossrefGoogle Scholar

  • Polich, J., Lawson, D. (1985). Event-related potential paradigms using tin electrodes. American Journal of EEG Technology, 25, 187–192 First citation in articleCrossrefGoogle Scholar

  • Reid, S.A., Duke, L.M., Allen, J.J.B. (1998). Resting frontal electroencephalographic asymmetry in depression: Inconsistencies suggest the need to identify mediating factors. Psychophysiology, 35, 389–404 First citation in articleCrossrefGoogle Scholar

  • Robinson, R.G., Kubos, K.L., Starr, L.B., Rao, K., Price, T.R. (1984). Mood disorders in stroke patients: Importance of lesion location. Brain, 107, 81–93 First citation in articleCrossrefGoogle Scholar

  • Rossi, G.F., Rosadini, G. (1967). Experimental analysis of cerebral dominance in man. In C.J. Milikan & F.L. Darley (Eds.), Brain mechanisms underlying speech and language (pp. 167- 174). New York: Grune & Stratton First citation in articleGoogle Scholar

  • Russell, J.A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178 First citation in articleCrossrefGoogle Scholar

  • Sackeim, H.A., Gur, R.C. (1978). Lateral asymmetry in intensity of emotional expression. Neuropsychologia, 16, 473–481 First citation in articleCrossrefGoogle Scholar

  • Schaffer, C.E., Davidson, R.J., Saron, C. (1983). Frontal and parietal electroencephalogram asymmetry in depressed and nondepressed subjects. Biological Psychiatry, 18, 753–762 First citation in articleGoogle Scholar

  • Schmitt, M.J., Steyer, R. (1990). Beyond intuition and classical test theory: A reply to Epstein. Methodika, 4, 101–107 First citation in articleGoogle Scholar

  • Steiger, J.H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245–251 First citation in articleCrossrefGoogle Scholar

  • Steyer, R., Ferring, D., Schmitt, M. (1992). States and traits in psychological assessment. European Journal of Psychological Assessment, 8, 79–98 First citation in articleGoogle Scholar

  • Suckfüll, M. (2000). Film analysis and psychophysiology: Effects of moments of impact and protagonists. Media Psychology, 2, 269–301 First citation in articleCrossrefGoogle Scholar

  • Sutton, S.K., Davidson, R.J. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8, 204–210 First citation in articleCrossrefGoogle Scholar

  • Terracciano, A., McCrae, R.R., Hagemann, D., Costa, P.T.J. (2003). Individual difference variables, affective differentiation, and the structures of affect. Journal of Personality, 71, 669–703 First citation in articleCrossrefGoogle Scholar

  • Terzian, H., Cecotto, C. (1959). Su un nuovo metodo per la determinazione e lo studio della dominanza emisferica. [On a new method for the determination and the study of hemisphere dominance] Giornale di Psychiatria e di Neuropathologia, 87, 889–924 First citation in articleGoogle Scholar

  • Tomarken, A.J., Davidson, R.J., Henriques, J.B. (1990). Resting frontal brain asymmetry predicts affective responses to films. Journal of Personality and Social Psychology, 59, 791–801 First citation in articleCrossrefGoogle Scholar

  • Tomarken, A.J., Davidson, R.J., Wheeler, R.E., Kinney, L. (1992). Psychometric properties of resting anterior EEG asymmetry: Temporal stability and internal consistency. Psychophysiology, 29, 576–592 First citation in articleCrossrefGoogle Scholar

  • Watson, D., Clark, L.A., Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070 First citation in articleCrossrefGoogle Scholar

  • Wheeler, R.E., Davidson, R.J., Tomarken, A.J. (1993). Frontal brain asymmetry and emotional reactivity: A biological substrate of affective style. Psychophysiology, 30, 82–89 First citation in articleCrossrefGoogle Scholar