Skip to main content
Original Article

Using a Systems-Based Risk Score Approach to Examine Genetic Predisposition to Novelty Seeking

Published Online:https://doi.org/10.1027/1614-0001/a000233

Abstract. Previous research is mixed regarding the relation between dopamine and Novelty Seeking. The goals of the current study were to support the hypotheses that Novelty Seeking is associated with dopamine genes and that modeling genetic risk score increases the utility of genetic information in hypothesis-driven research. The results showed that higher hypodopaminergic genetic risk score positively predicted higher Novelty Seeking score, F(1, 115) = 5.76, p < .01, R2 = 0.06. The findings support study hypotheses and, in combination with previous studies, show the utility of empirically validated system-based risk scores as a means of modeling genetic predisposition in neurobiological systems. This approach provides a mechanism for incorporating genetic predisposition into theory-driven multivariate etiological models of psychological constructs such as personality and mental illness.

References

  • Aly, M., Wiklund, F., Xu, J., Isaacs, W. B., Eklund, M., D’Amato, M., … Gronberg, H. (2011). Polygenic risk score improves prostate cancer risk prediction: Results from the Stockholm-1 cohort study. European Urology, 60, 21–28. doi: 10.1016/j.eururo.2011.01.017 First citation in articleCrossrefGoogle Scholar

  • American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: American Psychiatric Association. First citation in articleGoogle Scholar

  • Benjamin, J., Greenberg, B., Murphy, D. L., Lin, L., Patterson, C., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genetics, 12, 81–84. doi: 10.1038/ng0196-81 First citation in articleCrossrefGoogle Scholar

  • Blum, K., Giordano, J., Morse, S., Liu, Y., Tan, J., Bowirrat, A., … Bailey, J. (2010). Genetic addiction risk score (Gars) analysis: Exploratory development of polymorphic risk alleles in poly-drug addicted males. IIOAB Journal, 1, 1–14. doi: 10.5772/20067 First citation in articleCrossrefGoogle Scholar

  • Camperio Ciani, A. S., Edelman, S., & Ebstein, R. P. (2013). The dopamine D4 receptor (DRD4) exon 3 VNTR contributes to adaptive personality differences in an Italian small island population. European Journal of Personality, 27, 592–604. doi: 10.1002/per.1917 First citation in articleCrossrefGoogle Scholar

  • Caspi, A., Roberts, B. W., & Shiner, R. L. (2005). Personality development: Stability and change. Annual Review of Psychology, 56, 453–484. doi: 10.1146/annurev.psych.55.090902.141913 First citation in articleCrossrefGoogle Scholar

  • Cloninger, C. R. (1987a). A systematic method for clinical description and classification of personality variants: A proposal. Archives of General Psychiatry, 4, 573–588. First citation in articleCrossrefGoogle Scholar

  • Cloninger, C. R. (1987b). Neurogenetic adaptive mechanisms in alcoholism. Science, 236, 410–416. First citation in articleCrossrefGoogle Scholar

  • Cloninger, C. R., Przybeck, T. R., & Svrakic, D. M. (1991). The tridimensional personality questionnaire: U.S. normative data. Psychological Reports, 69, 1047–1057. First citation in articleCrossrefGoogle Scholar

  • Cloninger, C. R., Przybeck, T. R., Svrakic, D. M., & Wetzel, R. D. (1994). The Temperament and Character Inventory (TCI): A guide to its development and use. St. Louis, MO: Center for Psychobiology of Personality, Washington University. First citation in articleGoogle Scholar

  • Conner, B. T., Hellemann, G. S., Ritchie, T., & Noble, E. P. (2010). Genetic, personality, and environmental predictors of drug use in adolescents. Journal of Substance Abuse Treatment, 38, 178–190. doi: 10.1016/j.jsat.2009.07.004 First citation in articleCrossrefGoogle Scholar

  • Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 126–134. doi: 10.1186/1741-7015-11-126 First citation in articleCrossrefGoogle Scholar

  • De Jager, P. L., Chibnik, L. B., Cui, J., Reischl, J., Lehr, S., Simon, K. C., … Karlson, E. W., Steering Committee of the BENEFIT Study, Steering Committee of the BEYOND Study, Steering Committee of the LTF Study, Steering Committee of the CCR1 Study. (2009). Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: A weighted genetic risk score. Lancet Neurology, 8, 1111–1119. doi: 10.1016/S1474-4422(09)70275-3 First citation in articleCrossrefGoogle Scholar

  • de Moor, M. H., van den Berg, S. M., Verweij, K. J., Krueger, R. F., Luciano, M., Vasquez, A. A., … Gordon, S. D. (2015). Genome-wide association study identifies novel locus for neuroticism and shows polygenic association with major depressive disorder. JAMA Psychiatry, 72, 642–650. doi: 10.1001/jamapsychiatry.2015.0554 First citation in articleCrossrefGoogle Scholar

  • Derringer, J., Krueger, R. F., Dick, D. M., Saccone, S., Grucza, R. A., & Agrawal, A., … Gene Environment Association Studies (GENEVA) Consortium. (2010). Predicting sensation seeking from dopamine genes. A candidate-system approach. Psychological Science, 21, 1282–1290. doi: 10.1177/0956797610380699 First citation in articleCrossrefGoogle Scholar

  • Donnellan, M. B., Hill, P. L., & Roberts, B. W. (2015). Personality development across the life span: Current findings and future directions. In M. MikulincerP. R. ShaverM. L. CooperR. LarsenEds., APA handbook of personality and social psychology, Volume 4: Personality processes and individual differences. APA handbooks in psychology (pp. 107–126). Washington, DC: American Psychological Association. doi: 10.1037/14343-005 First citation in articleCrossrefGoogle Scholar

  • Ebstein, R. P. (2006). The molecular genetic architecture of human personality: Beyond self-report questionnaires. Molecular Psychiatry, 11, 427–445. First citation in articleCrossrefGoogle Scholar

  • Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., … Belmaker, R. H. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genetics, 12, 78–80. doi: 10.1038/ng0196-78 First citation in articleCrossrefGoogle Scholar

  • Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2008). The developmental antecedents of illicit drug use: Evidence from a 25-year longitudinal study. Drug and Alcohol Dependence, 96, 165–177. First citation in articleCrossrefGoogle Scholar

  • Heck, A., Lieb, R., Ellgas, A., Pfister, H., Lucae, S., Roeske, D., … Ising, M. (2009). Investigation of 17 candidate genes for personality traits confirms the effects of the HTR2A gene on novelty seeking. Brain & Behavior, 8, 464–472. doi: 10.1111/j.1601-183X.2009.00494.x First citation in articleCrossrefGoogle Scholar

  • Ikemoto, S., Kohl, R. R., & McBride, W. J. (1997). GABAA receptor blockage in the ventral tegmental area increases extracellular levels of dopamine in the nucleus accumbens of rats. Journal of Neurochemistry, 69, 137–143. doi: 10.1046/j.1471-4159.1997.69010137.x First citation in articleCrossrefGoogle Scholar

  • Kazantseva, A., Gaysina, D., Malykh, S., & Khusnutdinova, E. (2011). The role of dopamine transporter (SLC6A3) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms in personality traits. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1033–1040. doi: 10.1016/j.pnpbp.2011.02.013 First citation in articleCrossrefGoogle Scholar

  • Kluger, A. N., Siegfried, Z., & Ebstein, R. P. (2002). A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Molecular Psychiatry, 7, 712–717. doi: 10.1038/sj.mp.4001082 First citation in articleCrossrefGoogle Scholar

  • Krapohl, E., Euesden, J., Zabaneh, D., Pingault, J. B., Rimfeld, K., Von Stumm, S., … Plomin, R. (2016). Phenome-wide analysis of genome-wide polygenic scores. Molecular Psychiatry, 21, 1188–1193. doi: 10.1038/mp.2015.126 First citation in articleCrossrefGoogle Scholar

  • Malhotra, A. K., Virkkunen, M., Rooney, W., Eggert, M., Linnoila, M., & Goldman, D. (1996). The association between the dopamine D4 receptor (D4DR) 16 amino acid repeat polymorphism and novelty seeking. Molecular Psychiatry, 1, 388–391. First citation in articleGoogle Scholar

  • Maughan, B., & Sonuga-Barke, E. J. (2014). Editorial: Translational genetics of child psychopathology: A distant dream? Journal of Child Psychology and Psychiatry, 55, 1065–1067. doi: 10.1111/jcpp.12323 First citation in articleCrossrefGoogle Scholar

  • Michelhaugh, S. K., Fiskerstrand, C., Lovejoy, E., Bannon, M. J., & Quinn, J. P. (2001). The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. Journal of Neurochemistry, 79, 1033–1038. doi: 10.1046/j.1471-4159.2001.00647.x First citation in articleCrossrefGoogle Scholar

  • Montag, C., Markett, S., Basten, U., Stelzel, C., Fiebach, C., Canli, T., & Reuter, M. (2010). Epistasis of the DRD2/ANKK1 Taq Ia and the BDNF Val66Met polymorphism impacts novelty seeking and harm avoidance. Neuropsychopharmacology, 35, 1860–1867. doi: 10.1038/npp.2010.55 First citation in articleCrossrefGoogle Scholar

  • Munafo, M. R., & Flint, J. (2011). Dissecting the genetic architecture of human personality. Trends in Cognitive Sciences, 15, 395–400. doi: 10.1016/j.tics.2011.07.007 First citation in articleCrossrefGoogle Scholar

  • NCI-NHGRI Working Group on Replication in Association Studies, Chanock, S. J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D. J., Thomas, G., & Collins, F. S. (2007). Replicating genotype-phenotype associations. Nature, 447, 655–660. doi: 10.1038/447655a First citation in articleCrossrefGoogle Scholar

  • Neville, M. J., Johnstone, E. C., & Walton, R. T. (2004). Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human Mutation, 23(6), 540–545. First citation in articleCrossrefGoogle Scholar

  • Noble, E. P. (2003). D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 1116B, 103–125. doi: 10.1002/ajmg.b.10005 First citation in articleCrossrefGoogle Scholar

  • Oak, J. N., Oldenhof, J., & Van Tol, H. H. M. (2000). The dopamine D4 receptor: One decade of research. European Journal of Pharmacology, 405, 303–327. doi: 10.1016/S0014-2999(00)00562-8 First citation in articleCrossrefGoogle Scholar

  • Old, J. M. (1986). Fetal DNA analysis. In E. K. DaviesEd., Human genetic disease: A practical approach (pp. 1–17). Oxford, UK: IRL Press. First citation in articleGoogle Scholar

  • Ozkaragoz, T. Z., & Noble, E. P. (1995). Neuropsychological differences between sons of active alcoholic and non-alcoholic fathers. Alcohol and Alcoholism, 30(1), 115–123. First citation in articleGoogle Scholar

  • Pogue-Geile, M., Ferrell, R., Deka, R., Debski, T., & Manuck, S. (1998). Human novelty-seeking personality traits and dopamine D4 receptor polymorphisms: A twin and genetic association study. American Journal of Medical Genetics, 81, 44–48. doi: 10.1038/ng0196-78 First citation in articleCrossrefGoogle Scholar

  • Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Cesarini, D. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953–955. doi: 10.1038/nn.4040 First citation in articleCrossrefGoogle Scholar

  • Ravaja, N., & Keltikangas-Järvinen, L. (2001). Cloninger’s temperament and character dimensions in young adulthood and their relation to characteristics of parental alcohol use and smoking. Journal of Studies on Alcohol, 62, 98–104. doi: 10.15288/jsa.2001.62.98 First citation in articleCrossrefGoogle Scholar

  • Ray, L. A., Bryan, A., MacKillop, J., McGeary, J., Hesterberg, K., & Hutchison, K. E. (2009). The dopamine D4 receptor (4) gene exon III polymorphism, problematic alcohol use, and novelty seeking: Direct and mediated genetic effects. Addiction Biology, 14, 238–244. doi: 10.1111/j.1369-1600.2008.00120.x First citation in articleCrossrefGoogle Scholar

  • Ripatti, S., Tikkanen, E., Orho-Melander, M., Havulinna, A. S., Silander, K., Sharma, A., … Kathiresan, S. (2010). A multilocus genetic risk score for coronary heart disease: Case-control and prospective cohort analyses. Lancet, 376, 1393–1400. doi: 10.1016/S0140-6736(10)61267-6 First citation in articleCrossrefGoogle Scholar

  • Ritchie, T., & Noble, E. P. (2003). Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochemical Research, 28, 73–82. doi: 10.1023/A:1021648128758 First citation in articleCrossrefGoogle Scholar

  • Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychological Bulletin, 126, 3–25. First citation in articleCrossrefGoogle Scholar

  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., … Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491. First citation in articleCrossrefGoogle Scholar

  • Schinka, J. A., Letsch, E. A., & Crawford, F. C. (2002). DRD4 and novelty seeking: Results of meta‐analyses. American Journal of Medical Genetics Part A, 114(6), 643–648. First citation in articleCrossrefGoogle Scholar

  • Schoots, O., & Van Tol, H. H. M. (2003). The human dopamine D4 receptor repeat sequences modulate expression. The Pharmacogenomics Journal, 3, 343–348. doi: 10.1038/sj.tpj.6500208 First citation in articleCrossrefGoogle Scholar

  • Smith, D. J., Escott-Price, V., Davies, G., Bailey, M. E., Conde, L. C., Ward, J., … Hagenaars, S. P. (2015). Genome-wide analysis of over 106,000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry, 21, 749–757. doi: 10.1038/mp.2016.49 First citation in articleCrossrefGoogle Scholar

  • Soto, C. J., & Tackett, J. L. (2015). Personality traits in childhood and adolescence structure, development, and outcomes. Current Directions in Psychological Science, 24, 358–362. First citation in articleCrossrefGoogle Scholar

  • Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24, 417–463. doi: 10.1016/S0149-7634(00)00014-2 First citation in articleCrossrefGoogle Scholar

  • Steinberg, L. (2007). Risk taking in adolescence: New perspectives from brain and behavioral science. Current Directions in Psychological Science, 16, 55–59. doi: 10.1111/j.1467-8721.2007.00475.x First citation in articleCrossrefGoogle Scholar

  • Tournier, B. B., Steimer, T., Millet, P., Moulin-Sallanon, M., Vallet, P., Ibanez, V., & Ginovart, N. (2013). Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. The International Journal of Neuropsychopharmacology, 16, 1819–1834. doi: 10.1017/S1461145713000205 First citation in articleCrossrefGoogle Scholar

  • Turkheimer, E., Pettersson, E., & Horn, E. E. (2014). A phenotypic null hypothesis for the genetics of personality. Annual Review of Psychology, 65, 515–540. doi: 10.1146/annurev-psych-113011-143752 First citation in articleCrossrefGoogle Scholar

  • van den Berg, S. M., de Moor, M. H., Verweij, K. J., Krueger, R. F., Luciano, M., Vasquez, A. A., … Gordon, S. D. (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from the genetics of personality consortium. Behavior Genetics, 46(2), 170–182. doi: 10.1007/s10519-015-9735-5 First citation in articleCrossrefGoogle Scholar

  • Vandenbergh, D. J., Persico, A. M., Hawkins, A. L., Griffin, C. A., Li, X., Jabs, E. W., & Uhl, G. R. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics, 14, 1104–1106. First citation in articleCrossrefGoogle Scholar

  • White, F. J. (1996). Synaptic regulation of mesocorticolimbic dopamine neurons. Annual Review of Neuroscience, 19, 405–436. doi: 10.1146/annurev.ne.19.030196.002201 First citation in articleCrossrefGoogle Scholar

  • Widiger, T. A. (2013). Clinical application of the five-factor model. Journal of Personality, 81, 515–527. doi: 10.1111/jopy.12004 First citation in articleCrossrefGoogle Scholar