Skip to main content
Review Article

Developmental Dyscalculia

Neurobiological, Cognitive, and Developmental Perspectives

Published Online:https://doi.org/10.1027/2151-2604/a000205

Developmental dyscalculia (DD) is a specific learning disorder that affects the acquisition of arithmetic skills and number processing in children. A high comorbidity between DD and other neurodevelopmental disorders (e.g., dyslexia, attention-deficit/hyperactivity disorder [ADHD]) as well as substantial heterogeneity in cognitive profiles have been reported. Current studies indicate that DD is persistent, has a genetic component, and is related to functional and structural alterations of brain areas involved in magnitude representation. Recent neuronal and behavioral evidence is presented, showing that DD entails (a) impairments in two preverbal core systems of number, an approximate system for estimating larger magnitudes and an exact system for representing small magnitudes, (b) deficits in symbolic number processing, (c) aberrant and nonadaptive neuronal activation in basic magnitude processing and calculation, (d) dysfunctional arithmetic fact retrieval and persistent use of counting strategies in calculation, and (e) deficits in visuospatial working memory and the central executive. Finally, open research questions, including the role of domain-general cognitive resources in DD, causes and developmental consequences of comorbidity, as well as design and evaluation of interventions for DD, are briefly discussed.

References

  • Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012). Evidence for two numerical systems that are similar in humans and guppies. PLoS One, 7, e31923 doi: 10.1371/journal.pone.0031923. First citation in articleGoogle Scholar

  • Alarcón, M., DeFries, J. C., Light, J. G., & Pennington, B. F. (1997). A twin study of mathematics disability. Journal of Learning Disabilities, 30, 617–623. doi: 10.1177/002221949703000605 First citation in articleCrossrefGoogle Scholar

  • American Psychiatric Association . (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author. First citation in articleCrossrefGoogle Scholar

  • Anders, Y., Rossbach, H., Weinert, S., Ebert, S., Kuger, S., Lehrl, S., & von Maurice, J. (2012). Home and preschool learning environments and their relations to the development of early numeracy skills. Early Childhood Research Quarterly, 27, 231–244. doi: 10.1016/j.ecresq.2011.08.003 First citation in articleCrossrefGoogle Scholar

  • Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22, 701–714. doi: 10.1016/j.lindif.2012.05.004 First citation in articleCrossrefGoogle Scholar

  • Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry, 40, 57–87. doi: 10.1111/1469-7610.00424 First citation in articleCrossrefGoogle Scholar

  • Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. Neuroreport, 16, 1769–1773. doi: 10.1097/01.wnr.0000183905.23396.f1 First citation in articleCrossrefGoogle Scholar

  • Ansari, D., Lyons, I. M., van Eimeren, L., & Fei, X. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19, 1845–1853. doi: 10.1162/jocn.2007.19.11.1845 First citation in articleCrossrefGoogle Scholar

  • Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54, 2382–2393. doi: 10.1016/j.neuroimage.2010.10.009 First citation in articleCrossrefGoogle Scholar

  • Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46, 549–569. doi: 10.1177/0022219413483174 First citation in articleCrossrefGoogle Scholar

  • Ashkenazi, S., Mark‐Zigdon, N., & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16, 35–46. doi: 10.1111/j.1467-7687.2012.01190.x First citation in articleCrossrefGoogle Scholar

  • Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. S., Swigart, A. G., & Menon, V. (2013). Visuo-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51, 2305–2317. doi: 10.1016/j.neuropsychologia.2013.06.031 First citation in articleCrossrefGoogle Scholar

  • Ashkenazi, S., Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2, S152–S166. doi: 10.1016/j.dcn.2011.09.006 First citation in articleGoogle Scholar

  • Aunola, K., Leskinen, E., Lerkkanen, M., & Nurmi, J. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96, 699–713. doi: 10.1037/0022-0663.96.4.699 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: 10.1146/annurev-psych-120710-100422 First citation in articleCrossrefGoogle Scholar

  • Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35, 657–670. doi: 10.1016/j.ridd.2013.12.010 First citation in articleCrossrefGoogle Scholar

  • Berteletti, I., Prado, J., & Booth, J. R. (2014). Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex, 57, 143–155. doi: 10.1016/j.cortex.2014.04.001 First citation in articleCrossrefGoogle Scholar

  • Bishop, D. V. M. (2010). Which neurodevelopmental disorders get researched and why? PLoS One, 5, e15112. doi: 10.1371/journal.pone.0015112 First citation in articleGoogle Scholar

  • Boets, B., & De Smedt, B. (2010). Single-digit arithmetic in children with dyslexia. Dyslexia, 16, 183–191. doi: 10.1002/dys.403 First citation in articleGoogle Scholar

  • Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42, 288–298. doi: 10.1016/j.neuropsychologia.2003.08.007 First citation in articleCrossrefGoogle Scholar

  • Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33, 205–228. doi: 10.1080/87565640801982312 First citation in articleCrossrefGoogle Scholar

  • Bulthé, J., De Smedt, B., & Op de Beeck, H. (2014). Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. NeuroImage, 87, 311–322. doi: 10.1016/j.neuroimage.2013.10.049 First citation in articleCrossrefGoogle Scholar

  • Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10, 1–10. doi: 10.1167/10.6.20 First citation in articleCrossrefGoogle Scholar

  • Butterworth, B. (2005a). Developmental dyscalculia. In J. I. D. CampbellEd., Handbook of mathematical cognition (pp. 455–467). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Butterworth, B. (2005b). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18. doi: 10.1111/j.1469-7610.2005.00374.x First citation in articleCrossrefGoogle Scholar

  • Butterworth, B., & Kovas, Y. (2013). Understanding neurocognitive developmental disorders can improve education for all. Science, 340, 300–305. doi: 10.1126/science.1231022 First citation in articleCrossrefGoogle Scholar

  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053. doi: 10.1126/science.1201536 First citation in articleCrossrefGoogle Scholar

  • Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4, e125. doi: 10.1371/journal.pbio.0040125 First citation in articleGoogle Scholar

  • Cohen Kadosh, R., Dowker, A., Heine, A., Kaufmann, L., & Kucian, K. (2013). Interventions for improving numerical abilities: Present and future. Trends in Neuroscience and Education, 2, 85–93. doi: 10.1016/j.tine.2013.04.001 First citation in articleCrossrefGoogle Scholar

  • Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3, 63–68. doi: 10.1016/j.tine.2013.12.001 First citation in articleCrossrefGoogle Scholar

  • Davis, N., Cannistraci, C. J., Rogers, B. P., Gatenby, J. C., Fuchs, L. S., Anderson, A. W., & Gore, J. C. (2009). Aberrant functional activation in school age children at-risk for mathematical disability: A functional imaging study of simple arithmetic skill. Neuropsychologia, 47, 2470–2479. doi: 10.1016/j.neuropsychologia.2009.04.024 First citation in articleCrossrefGoogle Scholar

  • Davis, O. P., Band, G., Pirinen, M., Haworth, C. A., Meaburn, E. L., Kovas, Y., … Spencer, C. A. (2014). The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nature Communications, 5, 4204. doi: 10.1038/ncomms5204 First citation in articleCrossrefGoogle Scholar

  • De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: Evidence from developmental dyslexia. Neuropsychologia, 48, 3973–3981. doi: 10.1016/j.neuropsychologia.2010.10.018 First citation in articleCrossrefGoogle Scholar

  • De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55. doi: 10.1016/j.tine.2013.06.001 First citation in articleCrossrefGoogle Scholar

  • De Visscher, A., & Noël, M. (2014). Arithmetic facts storage deficit: The hypersensitivity‐to‐interference in memory hypothesis. Developmental Science, 17, 434–442. doi: 10.1111/desc.12135 First citation in articleCrossrefGoogle Scholar

  • De Weerdt, F., Desoete, A., & Roeyers, H. (2013). Working memory in children with reading disabilities and/or mathematical disabilities. Journal of Learning Disabilities, 46, 461–472. doi: 10.1177/0022219412455238 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42. doi: 10.1016/0010-0277(92)90049-N First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7, 145–147. doi: 10.1016/S1364-6613(03)00055-X First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16, 626–641. doi: 10.1037/0096-1523.16.3.626 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506. doi: 10.1080/02643290244000239 First citation in articleCrossrefGoogle Scholar

  • Denckla, M. B. (1994). Measurement of executive function. In G. R. LyonEd., Frames of reference for the assessment of learning disabilities: New views on measurement issues (pp. 117–142). Baltimore, MD: Brookes. First citation in articleGoogle Scholar

  • Diamond, A. (2005). Attention-deficit disorder (attention-deficit/hyperactivity disorder without hyperactivity): A neurobiologically and behaviorally distinct disorder from attention-deficit/hyperactivity disorder (with hyperactivity). Development and Psychopathology, 17, 807–825. doi: 10.1017/S0954579405050388 First citation in articleCrossrefGoogle Scholar

  • Dumontheil, I., & Klingberg, T. (2012). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cerebral Cortex, 22, 1078–1085. doi: 10.1093/cercor/bhr175 First citation in articleCrossrefGoogle Scholar

  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428–1446. doi: 10.1037/0012-1649.43.6.1428 First citation in articleCrossrefGoogle Scholar

  • DuPaul, G. J., & Volpe, R. J. (2009). ADHD and learning disabilities: Research findings and clinical implications. Current Attention Disorders Reports, 1, 152–155. doi: 10.1007/s12618-009-0021-4 First citation in articleCrossrefGoogle Scholar

  • Emerson, R. W., & Cantlon, J. F. (2015). Continuity and change in children’s longitudinal neural responses to numbers. Developmental Science, 18, 314–326. doi: 10.1111/desc.12215 First citation in articleCrossrefGoogle Scholar

  • Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. doi: 10.1016/j.jecp.2014.01.013 First citation in articleCrossrefGoogle Scholar

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. doi: 10.1016/j.tics.2004.05.002 First citation in articleCrossrefGoogle Scholar

  • Fias, W., Menon, V., & Szucs, D. (2013). Multiple components of developmental dyscalculia. Trends in Neuroscience and Education, 2, 43–47. doi: 10.1016/j.tine.2013.06.006 First citation in articleCrossrefGoogle Scholar

  • Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. doi: 10.1016/j.edurev.2013.05.003 First citation in articleCrossrefGoogle Scholar

  • Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition. In T. P. CarpenterJ. M. MoserT. A. RombergEds., Addition and subtraction: A cognitive perspective (pp. 67–81). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Gaidoschik, M. (2012). First-graders’ development of calculation strategies: How deriving facts helps automatize facts. Journal für Mathematikdidaktik, 33, 287–315. doi: 10.1007/s13138-012-0038-6 First citation in articleCrossrefGoogle Scholar

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74. doi: 10.1016/0010-0277(92)90050-R First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15. doi: 10.1177/00222194040370010201 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47, 1539–1552. doi: 10.1037/a0025510 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22, 23–27. doi: 10.1177/0963721412469398 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121–151. doi: 10.1016/j.jecp.2004.03.002 First citation in articleCrossrefGoogle Scholar

  • Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642–648. doi: 10.1037/a0026218 First citation in articleCrossrefGoogle Scholar

  • Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8, e67374. doi: 10.1371/journal.pone.0067374 First citation in articleGoogle Scholar

  • Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47, 604–608. doi: 10.1016/j.neuropsychologia.2008.10.013 First citation in articleCrossrefGoogle Scholar

  • Greven, C. U., Kovas, Y., Willcutt, E. G., Petrill, S. A., & Plomin, R. (2014). Evidence for shared genetic risk between ADHD symptoms and reduced mathematics ability: A twin study. Journal of Child Psychology and Psychiatry, 55, 39–48. doi: 10.1111/jcpp.12090 First citation in articleCrossrefGoogle Scholar

  • Gross, H. J., Pahl, M., Aung, S., Hong, Z., Tautz, J., & Shaowu, Z. (2009). Number-based visual generalisation in the honeybee. PLoS One, 4, 1–9. doi: 10.1371/journal.pone.0004263 First citation in articleCrossrefGoogle Scholar

  • Hart, S. A., Petrill, S. A., Willcutt, E., Thompson, L. A., Schatschneider, C., Deater-Deckard, K., & Cutting, L. E. (2010). Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: General genes, general environments. Psychological Science, 21, 1708–1715. doi: 10.1177/0956797610386617 First citation in articleCrossrefGoogle Scholar

  • Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341, 1123–1126. doi: 10.1126/science.1239052 First citation in articleCrossrefGoogle Scholar

  • He, L., Zuo, Z., Chen, L., & Humphreys, G. (2014). Effects of number magnitude and notation at 7T: Separating the neural response to small and large, symbolic and nonsymbolic number. Cerebral Cortex, 24, 2199–2209. doi: 10.1093/cercor/bht074 First citation in articleCrossrefGoogle Scholar

  • Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13, 876–885. doi: 10.1111/j.1467-7687.2009.00938.x First citation in articleCrossrefGoogle Scholar

  • Huttenlocher, J., Jordan, N. C., & Levine, S. C. (1994). A mental model for early arithmetic. Journal of Experimental Psychology: General, 123, 284–296. doi: 10.1037/0096-3445.123.3.284 First citation in articleCrossrefGoogle Scholar

  • Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 106, 10382–10385. doi: 10.1073/pnas.0812142106 First citation in articleCrossrefGoogle Scholar

  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85, 103–119. doi: 10.1016/S0022-0965(03)00032-8 First citation in articleCrossrefGoogle Scholar

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11, 662–668. doi: 10.1111/j.1467-7687.2008.00715.x First citation in articleCrossrefGoogle Scholar

  • Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62, 498–525. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L., & Nuerk, H. (2008). Basic number processing deficits in ADHD: A broad examination of elementary and complex number processing skills in 9- to 12-year-old children with ADHD-C. Developmental Science, 11, 692–699. doi: 10.1111/j.1467-7687.2008.00718.x First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36, 763–787. doi: 10.1080/87565641.2010.549884 First citation in articleCrossrefGoogle Scholar

  • Knopik, V. S., Alarcón, M., & DeFries, J. C. (1997). Comorbidity of mathematics and reading deficits: Evidence for a genetic etiology. Behavior Genetics, 27, 447–453. doi: 10.1023/A:1025622400239 First citation in articleCrossrefGoogle Scholar

  • Kohn, J., Wyschkon, A., & Esser, G. (2013). Psychische Auffälligkeiten bei umschriebenen Entwicklungsstörungen: Gibt es Unterschiede zwischen Lese-Rechtschreib- und Rechenstörungen? [Mental peculiarities in specific developmental disorders: Are there differences between dyslexia and dyscalculia?]. Lernen und Lernstörungen, 2, 7–20. doi: 10.1024/2235-0977/a000027 First citation in articleLinkGoogle Scholar

  • Kovas, Y., Petrill, S. A., & Plomin, R. (2007). The origins of diverse domains of mathematics: Generalist genes but specialist environments. Journal of Educational Psychology, 99, 128–139. doi: 10.1037/0022-0663.99.1.128 First citation in articleCrossrefGoogle Scholar

  • Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103, 516–531. doi: 10.1016/j.jecp.2009.03.009 First citation in articleCrossrefGoogle Scholar

  • Krusche, P., Uller, C., & Dicke, U. (2010). Quantity discrimination in salamanders. The Journal of Experimental Biology, 213, 1822–1828. doi: 10.1242/jeb.039297 First citation in articleCrossrefGoogle Scholar

  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795. doi: 10.1016/j.neuroimage.2011.01.070 First citation in articleCrossrefGoogle Scholar

  • Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: A functional MRI study. Behavioral and Brain Functions, 2, 31. doi: 10.1186/1744-9081-2-31 First citation in articleCrossrefGoogle Scholar

  • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills – a longitudinal study. Frontiers in Psychology, 4, 459. doi: 10.3389/fpsyg.2013.00459 First citation in articleCrossrefGoogle Scholar

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. doi: 10.1016/j.cognition.2003.11.004 First citation in articleCrossrefGoogle Scholar

  • Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309–324. doi: 10.1016/j.jecp.2009.03.006 First citation in articleCrossrefGoogle Scholar

  • Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438. doi: 10.1016/j.cognition.2006.10.005 First citation in articleCrossrefGoogle Scholar

  • LeFevre, J., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuk, S., & Smith-Chant, B. L. (2013). The role of executive attention in the acquisition of mathematical skills for children in Grades 2 through 4. Journal of Experimental Child Psychology, 114, 243–261. doi: 10.1016/j.jecp.2012.10.005 First citation in articleCrossrefGoogle Scholar

  • LeFevre, J., Fast, L., Skwarchuk, S., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81, 1753–1767. doi: 10.1111/j.1467-8624.2010.01508.x First citation in articleCrossrefGoogle Scholar

  • Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS One, 8, e70160. doi: 10.1371/journal.pone.0070160 First citation in articleGoogle Scholar

  • Loe, I. M., & Feldman, H. M. (2007). Academic and educational outcomes of children with ADHD. Journal of Pediatric Psychology, 32, 643–654. doi: 10.1093/jpepsy/jsl054 First citation in articleCrossrefGoogle Scholar

  • Lyons, I. M., & Ansari, D. (2009). The cerebral basis of mapping nonsymbolic numerical quantities onto abstract symbols: An fMRI training study. Journal of Cognitive Neuroscience, 21, 1720–1735. doi: 10.1162/jocn.2009.21124 First citation in articleCrossrefGoogle Scholar

  • Lyons, I. M., Ansari, D., & Beilock, S. L. (2015). Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 36, 475–488. doi: 10.1002/hbm.22641 First citation in articleCrossrefGoogle Scholar

  • Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 377–384. doi: 10.1097/01.chi.0000153228.72591.73 First citation in articleCrossrefGoogle Scholar

  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457. doi: 10.1037/0033-295X.102.3.419 First citation in articleCrossrefGoogle Scholar

  • Metcalfe, A. W. S., Ashkenazi, S., Rosenberg-Lee, M., & Menon, V. (2013). Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children. Developmental Cognitive Neuroscience, 6, 162–175. doi: 10.1016/j.dcn.2013.10.001 First citation in articleCrossrefGoogle Scholar

  • Moll, K., Göbel, S. M., & Snowling, M. J. (in press). Basic number processing in children with specific learning disorders: Comorbidity of reading and mathematics disorders. Child Neuropsychology. doi: 10.1080/09297049.2014.899570 First citation in articleGoogle Scholar

  • Moll, K., Kunze, S., Neuhoff, N., Bruder, J., & Schulte-Körne, G. (2014). Specific learning disorder: Prevalence and gender differences. PLoS One, 9, e103537. doi: 10.1371/journal.pone.0103537 First citation in articleCrossrefGoogle Scholar

  • Moll, K., Snowling, M. J., Göbel, S. M., & Hulme, C. (2015). Early language and executive skills predict variations in number and arithmetic skills in children at family-risk of dyslexia and typically developing controls. Learning & Instruction, 38, 53–62. doi: 10.1016/j.learninstruc.2015.03.004 First citation in articleCrossrefGoogle Scholar

  • Monuteaux, M. C., Faraone, S. V., Herzig, K., Navsaria, N., & Biederman, J. (2005). ADHD and dyscalculia: Evidence for independent familial transmission. Journal of Learning Disabilities, 38, 86–93. doi: 10.1177/00222194050380010701 First citation in articleCrossrefGoogle Scholar

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. doi: 10.1038/2151519a0 First citation in articleCrossrefGoogle Scholar

  • Murphy, M. M., Mazzocco, M. M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40, 458–478. doi: 10.1177/00222194070400050901 First citation in articleCrossrefGoogle Scholar

  • Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M., & Noël, M. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22, 860–874. First citation in articleCrossrefGoogle Scholar

  • Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 101, 7457–7462. doi: 10.1073/pnas.0402239101 First citation in articleCrossrefGoogle Scholar

  • Oliver, B., Harlaar, N., Hayiou Thomas, M. E., Kovas, Y., Walker, S. O., Petrill, S. A., … Plomin, R. (2004). A twin study of teacher-reported mathematics performance and low performance in 7-year-olds. Journal of Educational Psychology, 96, 504–517. doi: 10.1037/0022-0663.96.3.504 First citation in articleCrossrefGoogle Scholar

  • Organisation for Economic Co-operation, Development (OECD) . (2010). The high cost of low educational performance. Paris, France: OECD Publishing. First citation in articleGoogle Scholar

  • Ostad, S. A. (1997). Developmental differences in addition strategies: A comparison of mathematically disabled and mathematically normal children. British Journal of Educational Psychology, 67, 345–357. doi: 10.1111/j.2044-8279.1997.tb01249.x First citation in articleCrossrefGoogle Scholar

  • Ostad, S. A. (1999). Developmental progression of subtraction strategies: A comparison of mathematically normal and mathematically disabled children. European Journal of Special Needs Education, 14, 21–36. First citation in articleCrossrefGoogle Scholar

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London, UK: National Research and Development Centre for Adult Literacy and Numeracy. First citation in articleGoogle Scholar

  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88, 348–367. doi: 10.1016/j.jecp.2004.04.002 First citation in articleCrossrefGoogle Scholar

  • Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385–413. doi: 10.1016/j.cognition.2006.04.008 First citation in articleCrossrefGoogle Scholar

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41. doi: 10.1016/j.cognition.2010.03.012 First citation in articleCrossrefGoogle Scholar

  • Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592–617. doi: 10.1037/0033-2909.131.4.592 First citation in articleCrossrefGoogle Scholar

  • Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17, R1042–R1043. doi: 10.1016/j.cub.2007.10.013 First citation in articleGoogle Scholar

  • Price, G. R., Mazzocco, M. M., & Ansari, D. (2013). Why mental arithmetic counts: Brain activation during single digit arithmetic predicts high school math scores. The Journal of Neuroscience, 33, 156–163. doi: 10.1523/JNEUROSCI.2936-12.2013 First citation in articleCrossrefGoogle Scholar

  • Pugh, K. R., Mencl, W. E., Shaywitz, B. A., Shaywitz, S. E., Fulbright, R. K., Skudlarski, P., … Gore, J. C. (2000). The angular gyrus in developmental dyslexia: Task-specific differences in functional connectivity in posterior cortex. Psychological Science, 11, 51–56. doi: 10.1111/1467-9280.00214 First citation in articleCrossrefGoogle Scholar

  • Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience, 17, 1263–1269. doi: 10.1038/nn.3788 First citation in articleCrossrefGoogle Scholar

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. doi: 10.1016/j.lindif.2009.10.005 First citation in articleCrossrefGoogle Scholar

  • Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology, 91, 137–157. doi: 10.1016/j.jecp.2005.01.004 First citation in articleCrossrefGoogle Scholar

  • Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., … Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48, 123–135. doi: 10.1037/a0025356 First citation in articleCrossrefGoogle Scholar

  • Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19, 607–614. doi: 10.1111/j.1467-9280.2008.02130.x First citation in articleCrossrefGoogle Scholar

  • Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 1301–1308. doi: 10.1177/0956797612466268 First citation in articleCrossrefGoogle Scholar

  • Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790. doi: 10.1093/cercor/bhi055 First citation in articleCrossrefGoogle Scholar

  • Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74, 1807–1822. doi: 10.1046/j.1467-8624.2003.00639.x First citation in articleCrossrefGoogle Scholar

  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47, 2859–2865. doi: 10.1016/j.neuropsychologia.2009.06.009 First citation in articleCrossrefGoogle Scholar

  • Rousselle, L., & Noël, M. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102, 361–395. doi: 10.1016/j.cognition.2006.01.005 First citation in articleCrossrefGoogle Scholar

  • Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity may not mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99. doi: 10.1016/j.tics.2008.11.002 First citation in articleCrossrefGoogle Scholar

  • Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418–431. doi: 10.1016/j.jecp.2012.10.012 First citation in articleCrossrefGoogle Scholar

  • Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280–291. doi: 10.1111/j.1467-7687.2010.00976.x First citation in articleCrossrefGoogle Scholar

  • Schuchardt, K., Maehler, C., & Hasselhorn, M. (2008). Working memory deficits in children with specific learning disorders. Journal of Learning Disabilities, 41, 514–523. doi: 10.1177/0022219408317856 First citation in articleCrossrefGoogle Scholar

  • Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. The Neuroscientist, 19, 43–61. doi: 10.1177/1073858412440596 First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S. (2007). Prevalence of developmental dyscalculia. In D. B. BerchM. M. M. MazzoccoEds., Why is math so hard for some children? (pp. 49–60). Baltimore, MD: Brookes. First citation in articleGoogle Scholar

  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47, 121–125. doi: 10.1111/j.1469-8749.2005.tb01100.x First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34, 59–65. doi: 10.1177/002221940103400105 First citation in articleCrossrefGoogle Scholar

  • Siegler, R. S., & Shrager, J. (1984). Strategy choice in addition and subtraction: How do children know what to do? In C. SophianEd., Origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Simms, V., Gilmore, C., Cragg, L., Clayton, S., Marlow, N., & Johnson, S. (2015). Nature and origins of mathematics difficulties in very preterm children: A different etiology than developmental dyscalculia. Pediatric Research, 77, 389–395. doi: 10.1038/pr.2014.184 First citation in articleCrossrefGoogle Scholar

  • Skagerlund, K., & Träff, U. (in press). Number processing and heterogeneity of developmental dyscalculia: Subtypes with different cognitive profiles and deficits. Journal of Learning Disabilities. doi: 10.1177/0022219414522707 First citation in articleGoogle Scholar

  • Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035. doi: 10.1126/science.7434014 First citation in articleCrossrefGoogle Scholar

  • Stipek, D., & Valentino, R. A. (in press). Early childhood memory and attention as predictors of academic growth trajectories. Journal of Educational Psychology. doi: 10.1037/edu0000004 First citation in articleGoogle Scholar

  • Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., Fuchs, L., & Menon, V. (2013). Neural predictors of individual differences in response to math tutoring in primary-grade school children. PNAS: Proceedings of the National Academy of Sciences of the United States of America, 110, 8230–8235. doi: 10.1073/pnas.1222154110 First citation in articleCrossrefGoogle Scholar

  • Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of Educational Research, 76, 249–274. doi: 10.3102/00346543076002249 First citation in articleCrossrefGoogle Scholar

  • Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49, 2674–2688. doi: 10.1016/j.cortex.2013.06.007 First citation in articleCrossrefGoogle Scholar

  • Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754. doi: 10.1038/nature02466 First citation in articleCrossrefGoogle Scholar

  • Toll, S. M., Van der Ven, S. G., Kroesbergen, E. H., & Van Luit, J. H. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44, 521–532. doi: 10.1177/0022219410387302 First citation in articleCrossrefGoogle Scholar

  • Toll, S. W. M., van Viersen, S., Kroesbergen, E. H., & van Luit, J. E. H. (2015). The development of (non-)symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10–17. doi: 10.1016/j.lindif.2014.12.006 First citation in articleCrossrefGoogle Scholar

  • Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6, 129–136. doi: 10.1111/j.1751-228X.2012.01148.x First citation in articleCrossrefGoogle Scholar

  • van der Sluis, S., van der Leij, A., & de Jong, P. F. (2005). Working memory in Dutch children with reading- and arithmetic-related LD. Journal of Learning Disabilities, 38, 207–221. doi: 10.1177/00222194050380030301 First citation in articleCrossrefGoogle Scholar

  • van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17, 492–505. doi: 10.1111/desc.12143 First citation in articleCrossrefGoogle Scholar

  • Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16, 1493–1504. doi: 10.1162/0898929042568497 First citation in articleCrossrefGoogle Scholar

  • von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868–873. doi: 10.1111/j.1469-8749.2007.00868.x First citation in articleCrossrefGoogle Scholar

  • Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., & Pennington, B. F. (2013). Comorbidity between reading disability and math disability: Concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal of Learning Disabilities, 46, 500–516. doi: 10.1177/0022219413477476 First citation in articleCrossrefGoogle Scholar

  • World Health Organization . (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva, Switzerland: Author. First citation in articleGoogle Scholar

  • Zentall, S. S., Tom-Wright, K., & Lee, J. (2013). Psychostimulant and sensory stimulation interventions that target the reading and math deficits of students with ADHD. Journal of Attention Disorders, 17, 308–329. doi: 10.1177/1087054711430332 First citation in articleCrossrefGoogle Scholar

  • Zhang, X., Koponen, T., Räsänen, P., Aunola, K., Lerkkanen, M., & Nurmi, J. (2014). Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Development, 85, 1091–1107. doi: 10.1111/cdev.12173 First citation in articleCrossrefGoogle Scholar

  • Zorzi, M., & Butterworth, B. (1999). A computational model of number comparison. In M. HahnS. C. StonessEds., Proceedings of the twenty-first annual meeting of the Cognitive Science Society (pp. 772–777). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar