Skip to main content
Original Article

Working Memory and Number Sense as Predictors of Mathematical (Dis-)Ability

Published Online:https://doi.org/10.1027/2151-2604/a000208

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.

References

  • Alloway, T. P. (2007). Automated working memory assessment. London, UK: Psychological Corporation. First citation in articleGoogle Scholar

  • Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and visuospatial short-term and working memory in children: Are they separable? Child Development, 77, 1698–1716. doi: 10.1111/j.1467-8624.2006.00968.x First citation in articleCrossrefGoogle Scholar

  • Alloway, T. P., & Passolunghi, M. C. (2011). The relations between working memory and arithmetical abilities: A comparison between Italian and British children. Learning and Individual Differences, 21, 133–137. doi: 10.1016/j.lindif.2010.09.013 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49, 5–28. doi: 10.1080/027249896392784 First citation in articleCrossrefGoogle Scholar

  • Berg, D. H. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99, 288–308. doi: 10.1016/j.jecp.2007.12.002 First citation in articleCrossrefGoogle Scholar

  • Boonen, A. J. H., Kolkman, M. E., & Kroesbergen, E. H. (2011). Teacher related aspects influencing the acquisition of number sense within kindergarten classrooms. Journal of School Psychology, 49, 281–299. doi: 10.1016/j.jsp.2011.03.002 First citation in articleCrossrefGoogle Scholar

  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189–201. doi: 10.1037/0012-1649.41.6.189 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42. First citation in articleCrossrefGoogle Scholar

  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479. doi: 10.1016/j.jecp.2009.01.010 First citation in articleCrossrefGoogle Scholar

  • De Vos, T. (1992). Tempo-test rekenen [Arithmetic number fact test]. Nijmegen, The Netherlands: Berkhout. First citation in articleGoogle Scholar

  • Evers, A., Egberink, I. J. L., Braak, M. S. L., Frima, R. M., Vermeulen, C. S. M., & Van Vliet-Mulder, J. C. (2009–2012). COTAN Documentatie. Amsterdam, The Netherlands: Boom. [COTAN Documentation] First citation in articleGoogle Scholar

  • Friso-Van den Bos, I., Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Explaining variability: Numerical representations in 4- to 8-year old children. Journal of Cognition and Development, 15, 325–344. doi: 10.1080/15248372.2012.742900 First citation in articleGoogle Scholar

  • Friso-Van den Bos, I., Van der Ven, S. H. G., Kroesbergen, E. H., & Van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. doi: 10.1016/j.edurev.2013.05.003 First citation in articleCrossrefGoogle Scholar

  • Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81, 1520–1533. doi: 10.1111/j.1467-8624.2010.01489.x First citation in articleCrossrefGoogle Scholar

  • Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., … Schatschneider, C. (2010). Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Developmental Psychology, 46, 1731–1746. doi: 10.1037/a0020662 First citation in articleCrossrefGoogle Scholar

  • Gathercole, S. E., Alloway, T. P., Kirkwood, H. J., Elliott, J. G., Holmes, J., & Hilton, K. A. (2008). Attentional and executive function behaviours in children with poor working memory. Learning and Individual Differences, 18, 214–223. doi: 10.1016/j.lindif.2007.10.003 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. Learning and Individual Differences, 20, 130–133. doi: 10.1016/j.lindif.2009.10.008 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool the number sets test. Journal of Psychoeducational Assessment, 27, 265–279. doi: 10.1177/0734282908330592 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343–1359. doi: 10.1111/j.1467-8624.2007.01069.x First citation in articleCrossrefGoogle Scholar

  • Gullick, M. M., Sprute, L. A., & Temple, E. (2011). Individual differences in working memory, nonverbal IQ, and mathematics achievement and brain mechanisms associated with symbolic and nonsymbolic number processing. Learning and Individual Differences, 21, 644–654. doi: 10.1016/j.lindif.2010 First citation in articleCrossrefGoogle Scholar

  • Janssen, J., Scheltens, F., & Kraemer, J.-M. (2005). Leerling- en onderwijsvolgsysteem rekenen-wiskunde [Student and education tracking system arithmetic-mathematics]. Arnhem, The Netherlands: Cito. First citation in articleGoogle Scholar

  • Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82–88. doi: 10.1016/j.lindif.2009.07.004 First citation in articleCrossrefGoogle Scholar

  • Kolkman, M. E., Hoijtink, H. H., Kroesbergen, E. H., & Leseman, P. P. M. (2013). The role of executive functions in numerical skills. Learning and Individual Differences, 24, 145–151. doi: 10.1016/j.lindif.2013.01.004 First citation in articleCrossrefGoogle Scholar

  • Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95–103. doi: 10.1016/j.learninstruc.2012.12.001 First citation in articleCrossrefGoogle Scholar

  • Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2014). Involvement of working memory in longitudinal development of number–magnitude skills. Infant and Child Development, 23, 36–50. doi: 10.1002/icd.1834 First citation in articleCrossrefGoogle Scholar

  • Kort, W., Schittekatte, M., Dekker, P. H., Verhaeghe, P., Compaan, E. L., Bosmans, M., & Vermeir, G. (2005). WISC-III NL; Wechsler intelligence scale for children, derde Editie NL. Handleiding en verantwoording [Wechsler intelligence scale for children, 3rd. Dutch edition]. London, UK: Harcourt Assessment. First citation in articleGoogle Scholar

  • Kroesbergen, E. H., Van 't Noordende, J. E., & Kolkman, M. E. (2014). Training working memory in kindergarten children: Effects on working memory and early numeracy. Child Neuropsychology, 20, 23–37. doi: 10.1080/09297049.2012.736483 First citation in articleCrossrefGoogle Scholar

  • Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546–565. doi: 10.1016/j.jecp.2008.12.006 First citation in articleCrossrefGoogle Scholar

  • LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81, 1753–1767. doi: 10.1111/j.1467-8624.2010.01508.x First citation in articleCrossrefGoogle Scholar

  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224–1237. doi: 10.1111/j.1467-8624.2011.01608.x First citation in articleCrossrefGoogle Scholar

  • Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25. doi: 10.1016/j.cognition.2009.10.006 First citation in articleCrossrefGoogle Scholar

  • Passolunghi, M. C., & Lanfranchi, S. (2012). Domain‐specific and domain‐general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. The British Journal of Educational Psychology, 82, 42–63. doi: 10.1111/j.2044-8279.2011.02039.x First citation in articleCrossrefGoogle Scholar

  • Pennington, B. F., Santerre-Lemmon, L., Rosenberg, J., MacDonald, B., Boada, R., Friend, A., … Olson, R. K. (2012). Individual prediction of dyslexia by single versus multiple deficit models. Journal of Abnormal Psychology, 121, 212–224. doi: 10.1037/a0025823 First citation in articleCrossrefGoogle Scholar

  • Petrill, S., Logan, J., Hart, S., Vincent, P., Thompson, L., Kovas, Y., & Plomin, R. (2011). Math fluency is etiologically distinct from untimed math performance, decoding fluency, and untimed reading performance: Evidence from a Twin Study. Journal of Learning Disabilities, 45, 371–381. doi: 10.1177/0022219411407926 First citation in articleCrossrefGoogle Scholar

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41. doi: 10.1016/j.cognition.2010.03.012 First citation in articleCrossrefGoogle Scholar

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. doi: 10.1016/j.lindif.2009.10.005 First citation in articleCrossrefGoogle Scholar

  • Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418–431. doi: 10.1016/j.jecp.2012.10.012 First citation in articleCrossrefGoogle Scholar

  • Schuchardt, K., Maehler, C., & Hasselhorn, M. (2008). Working memory deficits in children with specific learning disorders. Journal of Learning Disabilities, 41, 514–523. doi: 10.1177/0022219408317856 First citation in articleCrossrefGoogle Scholar

  • Toll, S. W. M., Van der Ven, S. H. G., Kroesbergen, E. H., & Van Luit, J. E. H. (2011). Executive functions as predictors of math learning. Journal of Learning Disabilities, 44, 521–532. doi: 10.1177/0022219410387302 First citation in articleCrossrefGoogle Scholar

  • Träff, U. (2013). The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. Journal of Experimental Child Psychology, 116, 139–156. doi: 10.1016/j.jecp.2013.04.007 First citation in articleCrossrefGoogle Scholar

  • Van de Weijer-Bergsma, E., Kroesbergen, E. H., Prast, E., & Van Luit, J. E. H. (2014). Validity and reliability of an online visual-spatial working memory task for self-reliant administration in school-aged children. Behavior Research Methods. Advance online publication. doi: 10.3758/s13428-014-0469-8 First citation in articleGoogle Scholar

  • Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868–873. doi: 10.1111/j.1469-8749.2007.00868.x First citation in articleCrossrefGoogle Scholar