Skip to main content

Inflammational Animal Models for Schizophrenia

Published Online:https://doi.org/10.1027/2151-2604/a000216

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.

References

  • Abi-Dargham, A. (2002). Recent evidence for dopamine abnormalities in schizophrenia. European Psychiatry, 4, 341–347. First citation in articleCrossrefGoogle Scholar

  • Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., … Laruelle, M. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 97, 8104–8109. First citation in articleCrossrefGoogle Scholar

  • Bayer, T. A., Buslei, R., Havas, L. & Falkai, P. (1999). Evidence for activation of microglia in patients with psychiatric illnesses. Neuroscience Letters, 271, 126–128. First citation in articleCrossrefGoogle Scholar

  • Brown, A. S., Begg, M. D., Gravenstein, S., Schäfer, C. A., Wyatt, R. J., Bensahan, M., … Susser, E. S. (2004). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry, 61, 774–780. First citation in articleCrossrefGoogle Scholar

  • Cahn, W., Hulshoff Pol, H. E., Lems, E. B., van Haren, N. E., Schnack, H. G., van der Linden, J. A., … Kahn, R. S. (2002). Brain volume changes in first-episode schizophrenia: A 1-year follow-up study. Archives of General Psychiatry, 59, 1002–1010. First citation in articleCrossrefGoogle Scholar

  • Doorduin, J., de Vries, E. F., Willemsen, A. T., de Groot, J. C., Dierckx, R. A. & Klein, H. C. (2009). Neuroinflammation in schizophrenia-related psychosis: A PET study. European Journal of Nuclear Medicine, 50, 1801–1807. doi: 10.2967/jnumed.109.066647 First citation in articleCrossrefGoogle Scholar

  • Falkai, P., Schneider-Axmann, T., Honer, W. G., Vogeley, K., Schönell, H., Pfeiffer, U., … Tepest, R. (2003). Influence of genetic loading, obstetric complications and premorbid adjustment on brain morphology in schizophrenia: A MRI study. European Archives of Psychiatry and Clinical Neuroscience, 253, 92–99. First citation in articleGoogle Scholar

  • Fatemi, S. H., Cuadra, A. E., El-Fakahany, E. E., Sidwell, R. W. & Thuras, P. (2000). Prenatal viral infection causes alterations in nNOS expression in developing mouse brains. Neuroreport, 11, 1493–1496. First citation in articleCrossrefGoogle Scholar

  • Fatemi, S. H., Earle, J., Kanodia, R., Kist, D., Emamian, E. S., Patterson, P. H., … Sidwell, R. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. Cellular and Molecular Neurobiology, 22, 25–33. First citation in articleCrossrefGoogle Scholar

  • Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., … Bailey, K. (1999). Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Molecular Psychiatry, 4, 145–154. First citation in articleCrossrefGoogle Scholar

  • Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, C. & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biological Psychiatry, 52, 805–810. First citation in articleCrossrefGoogle Scholar

  • Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Huang, H., Oishi, K., Mori, S. & Juckel, G. (2008). Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders. Schizophrenia Research, 99, 56–70. First citation in articleCrossrefGoogle Scholar

  • Fatemi, S. H., Sidwell, R., Akhter, P., Sedgewick, J., Thuras, P., Bailey, K. & Kist, D. (1998). Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice. Synapse, 29, 84–88. First citation in articleCrossrefGoogle Scholar

  • Fatemi, S. H., Sidwell, R., Kist, D., Akhter, P., Meltzer, H. Y., Bailey, K. & Sedgwick, J. (1998). Differential expression of synaptosome-associated protein 25 kDa [SNAP-25] in hippocampi of neonatal mice following exposure to human influenza virus in utero. Brain Research, 800, 1–9. First citation in articleCrossrefGoogle Scholar

  • Gaughran, F. (2002). Immunity and schizophrenia: Autoimmunity, cytokines, and immune responses. International Review of Neurobiology, 52, 275–302. First citation in articleCrossrefGoogle Scholar

  • Heinz, A., Romero, B., Gallinat, J., Juckel, G. & Weinberger, D. R. (2003). Molecular brain imaging and the neurobiology and genetics of schizophrenia. Pharmacopsychiatry, 36, 152–157. First citation in articleCrossrefGoogle Scholar

  • Heinz, A., Saunders, R. C., Kolachana, B. S., Jones, D. W., Gorey, J. G., Bachevalier, J. & Weinberger, D. R. (1999). Striatal dopamine receptors and transporters in monkeys with neonatal temporal limbic damage. Synapse, 32, 71–79. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. & Weinberger, D. (2000). Schizophrenie: Die neurobiologische Entwicklungshypothese. In H. HelmchenF. HennH. LauterEds., Psychiatrie der Gegenwart 5 [Psychiatry of the present 5] (pp. 89–104). Berlin, Germany: Springer. First citation in articleGoogle Scholar

  • Howes, O. D., Fusar-Poli, P., Bloomfield, M., Selvaraj, S. & McGuire, P. (2012). From the prodrome to chronic schizophrenia: The neurobiology underlying psychotic symptoms and cognitive impairments. Current Pharmaceutical Design, 18, 459–465. First citation in articleCrossrefGoogle Scholar

  • Juckel, G., Gallinat, J., Riedel, M., Sokullu, S., Schulz, C., Möller, H. J., … Hegerl, U. (2003). Serotonergic dysfunction in schizophrenia assessed by the loudness dependence measure of primary auditory cortex evoked activity. Schizophrenia Research, 64, 115–124. First citation in articleCrossrefGoogle Scholar

  • Juckel, G., Gudlowski, Y., Müller, D., Ozgürdal, S., Brüne, M., Gallinat, J., … Meisenzahl, E. M. (2008). Loudness dependence of the auditory evoked N1/P2 component as an indicator of serotonergic dysfunction in patients with schizophrenia – a replication study. Psychiatry Research, 158, 79–82. First citation in articleCrossrefGoogle Scholar

  • Juckel, G., Manitz, M. P., Brüne, M., Friebe, A., Heneka, M. T. & Wolf, R. J. (2011). Microglial activation in a neuroinflammational animal model of schizophrenia – a pilot study. Schizophrenia Research, 131, 96–100. First citation in articleCrossrefGoogle Scholar

  • Juckel, G., Müller-Schubert, A., Gaebel, W. & Hegerl, U. (1996). Residual symptoms and P300 in schizophrenic outpatients. Psychiatry Research, 65, 23–32. First citation in articleCrossrefGoogle Scholar

  • Juckel, G., Reischies, F. M., Müller-Schubert, A., Vogel, A. C., Gaebel, W. & Hegerl, U. (1994). Ventricle size and P300 in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 243, 352–354. First citation in articleCrossrefGoogle Scholar

  • Juckel, G., Sass, L. & Heinz, A. (2003). Anhedonia, self-experience in schizophrenia, and implications for treatment. Pharmacopsychiatry, 3, 176–180. First citation in articleGoogle Scholar

  • Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends in Neuroscience, 19, 312–318. First citation in articleCrossrefGoogle Scholar

  • Limosin, F., Rouillon, F., Payan, C., Cohen, J. M. & Strub, N. (2003). Prenatal exposure to influenza as a risk factor for adult schizophrenia. Acta Psychiatrica Scandinavia, 107, 331–335. First citation in articleCrossrefGoogle Scholar

  • Manitz, M. P., Esslinger, M., Wachholz, S., Plümper, J., Friebe, A., Juckel, G. & Wolf, R. (2013). The role of microglia during life span in neuropsychiatric disease – an animal study. Schizophrenia Research, 143, 221–222. doi: 10.1016/j.schres.2012.10.028 First citation in articleCrossrefGoogle Scholar

  • Mathalon, D. H., Sullivan, E. V., Lim, K. O. & Pfefferbaum, A. (2001). Progressive brain volume changes and the clinical course of schizophrenia in men: A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 58, 148–157. First citation in articleCrossrefGoogle Scholar

  • Mednick, S. A., Machon, R. A., Huttunen, M. O. & Bonett, D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 45, 189–192. First citation in articleCrossrefGoogle Scholar

  • Meyer, U. (2014). Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biological Psychiatry, 75, 307–315. First citation in articleCrossrefGoogle Scholar

  • Meyer, U. & Feldon, J. (2010). Epidemiology-driven neurodevelopmental animal models of schizophrenia. Progress in Neurobiology, 90, 285–326. doi: 10.1016/j.pneurobio.2009.10.018 First citation in articleCrossrefGoogle Scholar

  • Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., … Feldon, J. (2006). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. Journal of Neuroscience, 26, 4752–4762. First citation in articleCrossrefGoogle Scholar

  • Monji, A., Kato, T. & Kanba, S. (2009). Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry and Clinical Neurosciences, 63, 257–265. First citation in articleCrossrefGoogle Scholar

  • Müller, N. & Ackenheil, M. (1998). Psychoneuroimmunology and the cytokine action in the CNS: Implications for psychiatric disorders. Progress in Neuropsychopharmacology & Biological Psychiatry, 22, 1–33. First citation in articleCrossrefGoogle Scholar

  • Müller, N., Dobmeier, P., Empl, M., Riedel, M., Schwarz, M. & Ackenheil, M. (1997). Soluble IL-6 receptors in the serum and cerebrospinal fluid of paranoid schizophrenic patients. European Psychiatry, 12, 294–299. doi: 10.1016/S0924-9338(97)84789-X First citation in articleCrossrefGoogle Scholar

  • Müller, N., Riedel, M., Scheppach, C., Brandstätter, B., Sokullu, S., Krampe, K., … Schwarz, M. J. (2002). Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. The American Journal of Psychiatry, 159, 1029–1034. First citation in articleCrossrefGoogle Scholar

  • Müller, N., Schlesinger, B. C., Hadjamu, M., Riedel, M., Schwarz, M., Ackenheil, M., … Gruber, R. (1998). Increased frequency of CD8 positive gamma/delta T-lymphocytes (CD8+ gamma/delta+) in unmedicated schizophrenic patients: Relation to impairment of the blood-brain barrier and HLA-DPA*02011. Schizophrenia Research, 32, 69–71. First citation in articleCrossrefGoogle Scholar

  • Munk-Jørgensen, P. & Ewald, H. (2001). Epidemiology in neurobiological research: Exemplified by the influenza-schizophrenia theory. The British Journal of Psychiatry: Supplement, 40, 530–532. First citation in articleGoogle Scholar

  • Munn, N. A. (2000). Microglia dysfunction in schizophrenia: An integrative theory. Medical Hypotheses, 54, 198–202. First citation in articleCrossrefGoogle Scholar

  • Ohsawa, K., Imai, Y., Kanasawa, H., Sasaki, Y. & Kohsaka, S. (2000). Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. Journal of Cell Science, 113, 3073–3084. First citation in articleGoogle Scholar

  • Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., … McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison. Lancet, 361, 281–288. First citation in articleCrossrefGoogle Scholar

  • Radewicz, K., Garey, L. J., Gentleman, S. M. & Reynolds, R. (2000). Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. Journal of Neuropathology & Experimental Neurology, 59, 137–150. First citation in articleGoogle Scholar

  • Rami, A. (2003). Ischemic neuronal death in the rat hippocampus: The calpain-calpastatin-caspase hypothesis. Neurobiology Disorder, 13, 75–88. First citation in articleCrossrefGoogle Scholar

  • Rothermundt, M., Arolt, V. & Bayer, T. A. (2001). Review of immunological and immunopathological findings in schizophrenia. Brain Behavior and Immunity, 15, 319–339. First citation in articleCrossrefGoogle Scholar

  • Scherk, H., Vogeley, K. & Falkai, P. (2003). Die Bedeutung von Interneuronen bei affektiven und schizophrenen Erkrankungen [The importance of interneurons in affective and schizophrenic disorders]. Fortschritte der Neurologie – Psychiatrie, 71, 27–32. First citation in articleCrossrefGoogle Scholar

  • Shapiro, L. A., Perez, Z. D., Foresti, M. L., Arisi, G. M. & Ribak, C. E. (2009). Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus. Brain Research, 1266, 29–36. First citation in articleCrossrefGoogle Scholar

  • Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. (2003). A mouse model of mental illness: Maternal influenza infection causes behavioural and pharmacological abnormalities in the offspring. Journal of Neuroscience, 23, 297–302. First citation in articleGoogle Scholar

  • Stehen, R. G., Mull, C., McClure, R., Hamer, R. M. & Lieberman, J. A. (2006). Brain volume in first-episode schizophrenia: Systematic review and meta-analysis of magnetic resonance imaging studies. The British Journal of Psychiatry, 188, 510–518. First citation in articleCrossrefGoogle Scholar

  • Stence, N., Waite, M. & Dailey, M. E. (2001). Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices. Glia, 33, 256–266. First citation in articleCrossrefGoogle Scholar

  • Takei, N., Lewis, S., Jones, P., Harvey, I. & Murray, R. M. (1996). Prenatal exposure to influenza and increased cerebrospinal fluid spaces in schizophrenia. Schizophrenia Bulletin, 22, 521–534. First citation in articleCrossrefGoogle Scholar

  • van Berckel, B. N., Bossong, M. G., Boellaard, R., Kloet, R., Schuitemaker, A., Caspers, E., … Kahn, R. S. (2008). Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study. Biological Psychiatry, 64, 820–822. First citation in articleCrossrefGoogle Scholar

  • Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet, 346, 552–557. First citation in articleCrossrefGoogle Scholar

  • Winter, C., Djodari-Irani, A., Sohr, R., Morgenstern, R., Feldon, J., Juckel, G. & Meyer, U. (2009). Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: Implications for brain disorders of neurodevelopmental origin such as schizophrenia. The International Journal of Neuropsychopharmacology, 12, 513–524. First citation in articleCrossrefGoogle Scholar

  • Winter, C., Reutiman, T. J., Folsom, T. D., Sohr, R., Wolf, R. J., Juckel, G. & Fatemi, S. H. (2008). Dopamine and serotonin levels following prenatal viral infection in mouse-implications for psychiatric disorders such as schizophrenia and autism. European Neuropsychopharmacology, 18, 712–716. First citation in articleCrossrefGoogle Scholar

  • Witthaus, H., Kaufmann, C., Bohner, G., Özgürdal, S., Gudlowski, Y., Gallinat, J., … Juckel, G. (2009). Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients. Psychiatry Research, 173, 163–169. doi: 10.1016/j.pscychresns.2008.08.002 First citation in articleCrossrefGoogle Scholar

  • Ye, S. M. & Johnson, R. W. (1999). Increased interleukin-6 expression by microglia from brain of aged mice. Journal of Neuroimmunolgy, 93, 139–148. First citation in articleCrossrefGoogle Scholar