Skip to main content
Opinion

Impairment of Brain Plasticity by Brain Inflammation

Published Online:https://doi.org/10.1027/2151-2604/a000247

Abstract. The ability to learn and the ability to reshape brain circuits are regarded as some of the most remarkable and important features of the brain. This ability declines with age due to largely unknown reasons, and it also is altered following stroke. Brain aging is associated with a progressive increase of the levels of inflammatory cytokine in the brain. Likewise, stroke causes pronounced increases of inflammatory cytokines in the brain. Following stroke, plasticity of the cortical representation following sensory deprivation and visualized with [14C]-2-deoxyglucose autoradiography is impaired for several weeks. Likewise, plasticity of visual acuity induced by occlusion of the ipsilateral eye is impaired. Both forms of plasticity may be rescued by treatment with anti-inflammatory drugs. In contrast to this, ocular dominance plasticity which is also induced by visual occlusion is not rescued by this intervention, neither following stroke nor in aged brains. Antiinflammatory interventions may therefore be a useful tool to enhance brain plasticity following stroke, but need to be supplemented by additional strategies to enhance brain plasticity.

References

  • Bezzola, L., Merillat, S., Gaser, C. & Jancke, L. (2011). Training-induced neural plasticity in golf novices. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 12444–12448. First citation in articleCrossrefGoogle Scholar

  • Bidmon, H. J., Oermann, E., Schleicher, A., Kato, K., Kinscherf, R., Buchkremer-Ratzmann, I., … Zilles, K. (1997). Copper-zinc superoxide dismutase and isolectin B4 binding are markers for associative and transhemispheric diaschisis induced by focal ischemia in rat cortex. Neuroscience Letters, 228, 163–166. First citation in articleCrossrefGoogle Scholar

  • Biernaskie, J., Chernenko, G. & Corbett, D. (2004). Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24, 1245–1254. First citation in articleCrossrefGoogle Scholar

  • Boehme, M., Guenther, M., Stahr, A., Liebmann, M., Jaenisch, N., Witte, O. W. & Frahm, C. (2014). Impact of indomethacin on neuroinflammation and hippocampal neurogenesis in aged mice. Neuroscience Letters, 572, 7–12. First citation in articleCrossrefGoogle Scholar

  • Clarkson, A. N., Huang, B. S., Macisaac, S. E., Mody, I. & Carmichael, S. T. (2010). Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature, 468, 305–309. First citation in articleCrossrefGoogle Scholar

  • Götz, T., Günther, A., Witte, O. W., Brunkhorst, F. M., Seidel, G. & Hamzei, F. (2014). Long-term sequelae of severe sepsis: cognitive impairment and structural brain alterations – an MRI study (LossCog MRI). BMC Neurologoy, 14, 145. First citation in articleCrossrefGoogle Scholar

  • Greifzu, F., Schmidt, S., Schmidt, K. F., Kreikemeier, K., Witte, O. W. & Lowel, S. (2011). Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proceedings of the National Academy of Sciences of the United States of America, 108, 15450–15455. First citation in articleCrossrefGoogle Scholar

  • Hagemann, G., Redecker, C., Neumann-Haefelin, T., Freund, H. J. & Witte, O. W. (1998). Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Annals of Neurology, 44, 255–258. First citation in articleCrossrefGoogle Scholar

  • Jablonka, J. A., Kossut, M., Witte, O. W. & Liguz-Lecznar, M. (2012). Experience-dependent brain plasticity after stroke: effect of ibuprofen and poststroke delay. The European Journal of Neuroscience, 36, 2632–2639. First citation in articleCrossrefGoogle Scholar

  • Jablonka, J. A., Witte, O. W. & Kossut, M. (2007). Photothrombotic infarct impairs experience-dependent plasticity in neighboring cortex. Neuroreport, 18, 165–169. First citation in articleCrossrefGoogle Scholar

  • Jaenisch, N., Liebmann, L., Guenther, M., Hübner, C. A., Frahm, C. & Witte, O. W. (2016). Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures. Scientific Reports, 6, 26173. First citation in articleCrossrefGoogle Scholar

  • Jurgens, H. A. & Johnson, R. W. (2012). Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Experimental Neurology, 233, 40–48. First citation in articleCrossrefGoogle Scholar

  • Kaliszewska, A., Bijata, M., Kaczmarek, L. & Kossut, M. (2012). Experience-dependent plasticity of thebBarrel cortex in mice observed with 2-DG brain mapping and c-Fos: Effects of MMP-9 KO. Cerebral Cortex, 22, 2160–2170. First citation in articleCrossrefGoogle Scholar

  • Keyvani, K., Sachser, N., Witte, O. W. & Paulus, W. (2004). Gene expression profiling in the intact and injured brain following environmental enrichment. Journal of Neuropathology and Experimental Neurology, 63, 598–609. First citation in articleCrossrefGoogle Scholar

  • Lehmann, K., Schmidt, K. F. & Lowel, S. (2012). Vision and visual plasticity in ageing mice. Restorative Neurology and Neuroscience, 30, 161–178. First citation in articleGoogle Scholar

  • Liguz-Lecznar, M., Siucinska, E., Zakrzewska, R. & Kossut, M. (2011). Impairment of experience-dependent cortical plasticity in aged mice. Neurobiology of Aging, 32, 1896–1905. First citation in articleCrossrefGoogle Scholar

  • Macrez, R., Ali, C., Toutirais, O., Le Mauff, B., Defer, G., Dirnagl, U. & Vivien, D. (2011). Stroke and the immune system: From pathophysiology to new therapeutic strategies. Lancet Neurology, 10, 471–480. First citation in articleCrossrefGoogle Scholar

  • Metz, G. A., Antonow-Schlorke, I. & Witte, O. W. (2005). Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms. Behavioural Brain Research, 162, 71–82. First citation in articleCrossrefGoogle Scholar

  • Peleg, S., Sananbenesi, F., Zovoilis, A., Burkhardt, S., Bahari-Javan, S., Agis-Balboa, R. C., … Fischer, A. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 328, 753–756. First citation in articleCrossrefGoogle Scholar

  • Prusky, G. T., Alam, N. M. & Douglas, R. M. (2006). Enhancement of vision by monocular deprivation in adult mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 11554–11561. First citation in articleCrossrefGoogle Scholar

  • Redecker, C., Wang, W., Fritschy, J. M. & Witte, O. W. (2002). Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. Journal of Cerebral Blood Flow and Metabolism: Oofficial Journal of the International Society of Cerebral Blood Flow and Metabolism, 22, 1463–1475. First citation in articleCrossrefGoogle Scholar

  • Riazi, K., Galic, M. A., Kentner, A. C., Reid, A. Y., Sharkey, K. A. & Pittman, Q. J. (2015). Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. The Journal of Neuroscience, 35, 4942–4952. First citation in articleCrossrefGoogle Scholar

  • Schmidt, C., Frahm, C., Schneble, N., Müller, J. P., Brodhun, M., Franco, I., … Bauer, R. (2015). Phosphoinositide 3-kinase γ restrains neurotoxic effects of microglia after focal brain Ischemia. Molecular Neurobiology, Advance online publication. doi: 10.1007/s12035-015-9472-z First citation in articleCrossrefGoogle Scholar

  • Schmidt, S., Redecker, C., Bruehl, C. & Witte, O. W. (2010). Age-related decline of functional inhibition in rat cortex. Neurobiology of Aging, 31, 504–511. First citation in articleCrossrefGoogle Scholar

  • Schroeter, M., Jander, S., Witte, O. W. & Stoll, G. (1994). Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. Journal of Neuroimmunology, 55, 195–203. First citation in articleCrossrefGoogle Scholar

  • Sieber, M. W., Claus, R. A., Witte, O. W. & Frahm, C. (2011). Attenuated inflammatory response in aged mice brains following stroke. PloS One, 6, e26288. First citation in articleGoogle Scholar

  • Sieber, M. W., Guenther, M., Jaenisch, N., Albrecht-Eckardt, D., Kohl, M., Witte, O. W. & Frahm, C. (2014). Age-specific transcriptional response to stroke. Neurobiology of Aging, 35, 1744–1754. First citation in articleCrossrefGoogle Scholar

  • Sieber, M. W., Jaenisch, N., Brehm, M., Guenther, M., Linnartz-Gerlach, B., Neumann, H., … Frahm, C. (2013). Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS One, 8, e52982. First citation in articleGoogle Scholar

  • Urbach, A., Bruehl, C. & Witte, O. W. (2006). Microarray-based long-term detection of genes differentially expressed after cortical spreading depression. The European Journal of Neuroscience, 24, 841–856. First citation in articleCrossrefGoogle Scholar

  • Witte, O. W., Bidmon, H. J., Schiene, K., Redecker, C. & Hagemann, G. (2000). Functional differentiation of multiple perilesional zones after focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 20, 1149–1165. First citation in articleCrossrefGoogle Scholar

  • Witte, O. W. & Freund, H. J. (1999). Neuronal dysfunction, epilepsy, and postlesional brain plasticity. Advances in Neurology, 81, 25–36. First citation in articleGoogle Scholar

  • Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. (2015). Microglia: Dynamic mediators of synapse development and plasticity. Trends in Immunology, 36, 605–613. First citation in articleCrossrefGoogle Scholar