Skip to main content
Original Communication

Dietary and Biochemical Characteristics Associated with Normal-Weight Obesity

Published Online:https://doi.org/10.1024/0300-9831/a000477

Abstract.Background: Inflammation and oxidative stress have been reported to be higher in subjects with normal weight obesity (NWO) syndrome [normal body mass index (BMI) (<25 kg/m2) but excessive body fat (for women ≥ 30% and for men ≥ 20%) according to World Health Organization (WHO) definitions]; however, it is unclear whether this is due to inadequate dietary antioxidant intake or the pathophysiology of NWO. The aim of present study was to assess the association between dietary factors and body antioxidant status with NWO syndrome in male university students. Methods: This study was a case-control study carried out on ninety age-matched male university students [30 normal weights (NW), 30 NWO and 30 overweight-obese (OB)]. A validated food frequency questionnaire (98 items) and 3-day 24-h recalls were used for dietary assessment. Total antioxidant capacity (TAC) of diet and serum and high-sensitive C-reactive protein (hs-CRP) concentrations were also measured. Results: Dietary intake of fruits (frequency factor (FF) = 2.3 vs 2.9, p < 0.05), legumes (FF = 0.7 vs 1.3, p < 0.01), nuts and seeds (FF = 0.4 vs 0.8, p < 0.05), beta-cryptoxanthin (p < 0.05), lycopene (p < 0.05) and serum TAC levels (p < 0.01) were significantly lower in NWO compared to the NW group. No significant differences in these parameters were observed between NWO and OB group. A significant negative correlation was observed between serum TAC levels and BMI (r = −0.57, p < 0.001) and body fat percent (r = −0.52, p < 0.001). Conclusions: This study shows that NWO male subjects consume lower amounts of dietary antioxidants and share the same low body antioxidant status as obese individuals, although they appear lean.

References

  • 1 Cecchini, M., Sassi, F., Lauer, J.A., Lee, Y.Y., Guajardo-Barron, V., & Chisholm, D. (2010) Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness. Lancet. 376, 1775–1784. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Di Renzo, L., Galvano, F., Orlandi, C., Bianchi, A., Di Giacomo, C., La Fauci, L., Acquaviva, R., & De Lorenzo, A. (2010) Oxidative stress in normal-weight obese syndrome. Obesity. 18, 2125–2130. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Romero-Corral, A., Somers, V.K., Sierra-Johnson, J., Korenfeld, Y., Boarin, S., Korinek, J., Jensen, M.D., Parati, G., & Lopez-Jimenez, F. (2010) Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 31, 737–746. First citation in articleCrossref MedlineGoogle Scholar

  • 4 De Lorenzo, A., Bianchi, A., Maroni, P., Iannarelli, A., Di Daniele, N., Iacopino, L., & Di Renzo, L. (2013) Adiposity rather than BMI determines metabolic risk. Int J Cardiol. 166, 111–117. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Fu, X., Zhu, F., Zhao, X., Ma, X., & Zhu, S. (2014) Central Fat Accumulation Associated with Metabolic Risks beyond Total Fat in Normal BMI Chinese Adults. Ann Nutr Metab. 64, 93–100. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Marques-Vidal, P., Chiolero, A., & Paccaud, F. (2008) Large differences in the prevalence of normal weight obesity using various cut-offs for excess body fat. E Spen Eur E J Clin Nutr Metab. 3, 159–162. First citation in articleCrossrefGoogle Scholar

  • 7 World Health Organization. (1995) Physical status: the use and interpretation of anthropometry: report of a WHO Expert Committee: Technical Report Series, No 854. World Health Organization. 854, 1–452. First citation in articleGoogle Scholar

  • 8 Dragsted, L.O. (2003) Antioxidant actions of polyphenols in humans. Int J Vitam Nutr Res. 73, 112–119. First citation in articleLinkGoogle Scholar

  • 9 Khor, A., Grant, R., Tung, C., Guest, J., Pope, B., Morris, M., & Bilgin, A. (2014) Postprandial oxidative stress is increased after a phytonutrient-poor food but not after a kJ matched phytonutrient-rich food. Nutr Res. 34, 391–400. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Halvorsen, B.L., Carlsen, M.H., Phillips, K.M., Bohn, S.K., Holte, K., Jacobs, D.R. Jr., & Blomhoff, R. (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr. 84, 95–135. First citation in articleCrossref MedlineGoogle Scholar

  • 11 De Lorenzo, A., Del Gobbo, V., Premrov, M.G., Bigioni, M., Galvano, F., & Di Renzo, L. (2007) Normal-weight obese syndrome: early inflammation? Am J Clin Nutr. 85, 40–45. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Kyle, U.G., Bosaeus, I., De Lorenzo, A.D., Deurenberg, P., Elia, M., Gomez, J.M., Heitmann, B.L., Kent-Smith, L., Melchior, J.C., Pirlich, M., Scharfetter, H., Schols, A.M., & Pichard, C. (2004) Composition of the ESPEN Working Group: Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr. 23, 1226–1243. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Esfahani, F.H., Asghari, G., Mirmiran, P., & Azizi, F. (2010) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol. 20, 150–158. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Mirmiran, P., Esfahani, F.H., Mehrabi, Y., Hedayati, M., & Azizi, F. (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 13, 654–662. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Pellegrini, N., Serafini, M., Salvatore, S., Del Rio, D., Bianchi, M., & Brighenti, F. (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res. 50, 1030–1038. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr. 133, 2812–2819. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Erel, O. (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 37, 277–285. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Reuter, T.Y. (2007) Diet-induced models for obesity and type 2 diabetes. Drug Discov Today Dis Models. 4, 3–8. First citation in articleCrossrefGoogle Scholar

  • 19 Ghane Basiri, M., Sotoudeh, G., Djalali, M., Reza Eshraghian, M., Noorshahi, N., Rafiee, M., Nikbazm, R., Karimi, Z., & Koohdani, F. (2015) Association of Major Dietary Patterns with General and Abdominal Obesity in Iranian Patients with Type 2 Diabetes Mellitus. Int J Vitam Nutr Res. 85, 145–155. First citation in articleLinkGoogle Scholar

  • 20 Schroder, H. (2007) Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 18, 149–160. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Zamora-Ros, R., Serafini, M., Estruch, R., Lamuela-Raventos, R.M., Martínez-Gonzalez, M.A., Salas-Salvado, J., Fiol, M., Lapetra, J., Aros, F., Covas, M.I., & Andres-Lacueva, C. (2013) PREDIMED Study Investigators: Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: evidence for a mechanism of antioxidant tuning. Nutr Metab Cardiovasc Dis. 23, 1167–1174. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Wadden, T.A., Webb, V.L., Moran, C.H., & Bailer, B.A. (2012) Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation. 125, 1157–1170. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Opie, R.S., Ralston, R.A., & Walker, K.Z. (2013) Adherence to a Mediterranean-style diet can slow the rate of cognitive decline and decrease the risk of dementia: a systematic review. Nutrition & Dietetics. 70, 206–217. First citation in articleGoogle Scholar

  • 24 Kanoski, S.E., & Davidson, T.L. (2011) Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav. 103, 59–68. First citation in articleCrossref MedlineGoogle Scholar

  • 25 U.S. Department of agriculture. (2000) Dietary Reference Intakes: RDA and AI for Vitamins and Elements. (Available from: http://iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/RDA%20and%20AIs_Vitamin%20and%20Elements.pdf, accessed 15 March 2014) First citation in articleGoogle Scholar

  • 26 Amirkhizi, F., Siassi, F., Djalali, M., & Foroushani, A.R. (2010) Evaluation of oxidative stress and total antioxidant capacity in women with general and abdominal adiposity. Obes Res Clin Pract. 4, 209–216. First citation in articleCrossrefGoogle Scholar

  • 27 Matsuda, M., & Shimomura, I. (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Prac. 7, 330–341. First citation in articleCrossrefGoogle Scholar

  • 28 Marques-Vidal, P., Pecoud, A., Hayoz, D., Paccaud, F., Mooser, V., Waeber, G., & Vollenweider, P. (2010) Normal weight obesity: relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr Metab Cardiovasc Dis. 20, 669–675. First citation in articleCrossref MedlineGoogle Scholar

  • 29 DeBoer, M.D. (2013) Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: a need for screening tools to target interventions. Nutrition. 29, 379–386. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Puchau, B., Zulet, M.A., de Echávarri, A.G., Hermsdorff, H.H., & Martínez, J.A. (2009) Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr. 28, 648–656. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Hermsdorff, H.H., Puchau, B., Volp, A.C., Barbosa, K.B., Bressan, J., Zulet, M.A., & Martínez, J.A. (2011) Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab. 8, 59–67. First citation in articleCrossrefGoogle Scholar

  • 32 Bahadoran, Z., Golzarand, M., Mirmiran, P., Shiva, N., & Azizi, F. (2012) Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr Metab. 9, 70–79. First citation in articleCrossrefGoogle Scholar

  • 33 Lopez-Legarrea, P., de la Iglesia, R., Abete, I., Bondia-Pons, I., Navas-Carretero, S., Forga, L., Martinez, J.A., & Zulet, M.A. (2013) Short-term role of the dietary total antioxidant capacity in two hypocaloric regimes on obese with metabolic syndrome symptoms: the RESMENA randomized controlled trial. Nutr Metab. 10, 22–33. First citation in articleCrossrefGoogle Scholar