Skip to main content
Article

Bovine lactoferrin ameliorates antioxidant esterase activity and 8-isoprostane levels in high-cholesterol-diet fed rats

Published Online:https://doi.org/10.1024/0300-9831/a000516

Abstract. The main aim of the present study was to show the effect of bovineLactoferrin (bLF), an 80 kD iron-binding glycoprotein, its application on antioxidant esterase activities and 8-isoprostane changes in high-cholesterol-diet fed (HCD-Fed) rats. The 44 adult Sprague-Dawley male rats were randomly assigned into four experimental groups. They were randomly assigned into four equivalent groups (n = 11). The groups included the control group which was fed with normal diet, bLF group, the third group which were made hypercholesterolemia by being fed with high cholesterol diet, and the last group which consisted of hypercholesterolemia rats treated with bLF (HCD + bLF) for 4 weeks (200 mg.kg−1 per day wt. dissolved in 0.9% normal saline).After 4 weeks, the serum Paraoxonase1 (PON1), Arylesterase (ARE) activity and 8-isoprostane with lipid profile were measured. Upon treatment with the bLF, the decrease in LDL-Cholesterol (LDL-C), Glucoses, Triglyceride (TG) and Total-Cholesterol (TC) levels and an increase in HDL-Cholesterol (HDL-C) level were observed. The co-administration of bLf for 4 weeks had decreased the 8-isoprostane levels significantly (P < 0.001) (86.36 ± 7.1 vs 117.18 ± 8.62) when compared to hypercholesterolemia-induced rats. Also, the Atherogenic Index (AI) in HCD + bLF group showed a significant decrease as compared to the HCD group (P < 0.001) (0.37 ± 0.07 vs 0.57 ± 0.09). The results indicated that bLF was effective against oxidative stress by its ability to increase PON1 activity and reduce the lipid peroxidation in high-cholesterol-fed rats.

References

  • 1 Jokinen, E. (2014) Obesity and cardiovascular disease. Minerva Pediatr. 67(1), 25–32. First citation in articleMedlineGoogle Scholar

  • 2 Lusis, A.J. (2000) Atherosclerosis. Nature. 407(6801), 233–41. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Kals, J., Kampus, P., Kals, M., Pulges, A., Teesalu, R. & Zilmer, K. et al. (2008) Inflammation and oxidative stress are associated differently with endothelial function and arterial stiffness in healthy subjects and in patients with atherosclerosis. Scand J Clin Lab Invest. 68(7), 594–601. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Chen, Y.E. (2011) Vascular cell lineage determination and differentiation. Arterioscler Thromb Vasc Biol. 31(7), 1467–8. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Havryliuk, S.O., Chekman, I.S., Horchakova, N.O., Ivanov, S.V., Oliinyk, S.A., & Baraboi, V.A. (2005) Role of oxidative stress in pathogenesis of atherosclerosis and ischemic heart disease. Ukr Biokhim Zh (1999). 77(6), 16–23. First citation in articleMedlineGoogle Scholar

  • 6 Wong-Ekkabut, J., Xu, Z., Triampo, W., Tang, I.M., Tieleman, D.P., & Monticelli, L. (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J. 93(12), 4225–36. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Singh, R.B., Mengi, S.A., Xu, Y.J., Arneja, A.S., & Dhalla, N.S. (2002) Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin Cardiol. 7(1), 40–53. First citation in articleMedlineGoogle Scholar

  • 8 Brambilla, D., Mancuso, C., Scuderi, M.R., Bosco, P., Cantarella, G. & Lempereur, L. et al. (2008) The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J. 7, 29. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Gonzalez-Chavez, S.A., Arevalo-Gallegos, S., & Rascon-Cruz, Q. (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 33(4), 301 e1–8. First citation in articleCrossrefGoogle Scholar

  • 10 Kim, C.W., Lee, T.H., Park, K.H., Choi, S.Y., & Kim, J. (2012) Human lactoferrin suppresses TNF-alpha-induced intercellular adhesion molecule-1 expression via competition with NF-kappaB in endothelial cells. FEBS Lett. 586(3), 229–34. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Burrow, H., Kanwar, R.K., & Kanwar, J.R. (2011) Antioxidant enzyme activities of iron-saturated bovine lactoferrin (Fe-bLf) in human gut epithelial cells under oxidative stress. Med Chem. 7(3), 224–30. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Raghuveer, T.S., McGuire, E.M., Martin, S.M., Wagner, B.A., Rebouche, C.J. & Buettner, G.R. et al. (2002) Lactoferrin in the preterm infants’ diet attenuates iron-induced oxidation products. Pediatr Res. 52(6), 964–72. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Superko, H.R. (2009) Cardiovascular event risk: high-density lipoprotein and paraoxonase. J Am Coll Cardiol. 54(14), 1246–8. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Balci, H., Genc, H., Papila, C., Can, G., Papila, B. & Yanardag, H. et al. (2012) Serum lipid hydroperoxide levels and paraoxonase activity in patients with lung, breast, and colorectal cancer. J Clin Lab Anal. 26(3), 155–60. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Tetens, I. (2012) Scientific Opinion on bovine lactoferrin. EFSA. 10(5), 26. First citation in articleGoogle Scholar

  • 16 Faridvand, Y., Oskuyi, A.E., & Khadem-Ansari, M.H. (2015) Serum 8-isoprostane levels and paraoxonase 1 activity in patients with stage I multiple myeloma. Redox Rep. 21, 204–8. First citation in articleGoogle Scholar

  • 17 Mikaelian, N.P., & Fortinskaia, E.S. (1983) Content of lipids in plasma and some cytochemical patterns of leukocytes in experimental hypercholesterolemia. Vopr Med Khim. 29(3), 57–60. First citation in articleMedlineGoogle Scholar

  • 18 Madamanchi, N.R., Hakim, Z.S., & Runge, M.S. (2005) Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost. 3(2), 254–67. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Mehdi, M.M., & Rizvi, S.I. (2012) Human plasma paraoxonase 1 (PON1) arylesterase activity during aging: correlation with susceptibility of LDL oxidation. Arch Med Res. 43(6), 438–43. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Shchukin Iu, V., D’Iachkov, V.A., Seleznev, E.I., Danilova, E.A., Pikatova, E.A., & Medvedeva, E.A. (2008) Molecular mechanisms of effects of rosuvastatin on systemic oxidative stress and endogenous inflammation in patients with atherosclerosis. Kardiologiia. 48(8), 41–5. First citation in articleMedlineGoogle Scholar

  • 21 Stroher, D.J., Escobar Piccoli Jda, C., Gullich, A.A., Pilar, B.C., Coelho, R.P. & Bruno, J.B. et al. (2015) 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model. Int J Food Sci Nutr. 66(5), 559–68. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Lewis, G.F., & Rader, D.J. (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 96(12), 1221–32. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Badimon, L., & Vilahur, G. (2012) LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Ann N Y Acad Sci. 1254, 18–32. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Nakamura, K., Morishita, S., Ono, T., Murakoshi, M., Sugiyama, K., Kato, H., … Nishino, H. (2016) Lactoferrin interacts with bile acids and increases fecal cholesterol excretion in rats. Biochem. Cell Biol. 95(1), 142–147. First citation in articleGoogle Scholar

  • 25 Maiolino, G., Rossitto, G., Caielli, P., Bisogni, V., Rossi, G.P., & Calo, L.A. (2013) The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm. 2013, 714653. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Mackness, M.I., Mackness, B., & Durrington, P.N. (2002) Paraoxonase and coronary heart disease. Atheroscler Suppl. 3(4), 49–55. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Gocmen, A.Y., Gumuslu, S., & Semiz, E. (2004) Association between paraoxonase-1 activity and lipid peroxidation indicator levels in people living in the Antalya region with angiographically documented coronary artery disease. Clin Cardiol. 27(7), 426–30. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Gutteridge, J.M., Paterson, S.K., Segal, A.W., & Halliwell, B. (1981) Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem J. 199(1), 259–61. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Yamauchi, K., Wakabayashi, H., Hashimoto, S., Teraguchi, S., Hayasawa, H., & Tomita, M. (1998) Effects of orally administered bovine lactoferrin on the immune system of healthy volunteers. Adv Exp Med Biol. 443, 261–5. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Thomas, C., Mackey, M.M., Diaz, A.A., & Cox, D.P. (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep. 14(3), 102–8. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Konishi, M., Iwasa, M., Yamauchi, K., Sugimoto, R., Fujita, N. & Kobayashi, Y. et al. (2006) Lactoferrin inhibits lipid peroxidation in patients with chronic hepatitis C. Hepatol Res. 36(1), 27–32. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Wang, Y.Z., Xu, C.L., An, Z.H., Liu, J.X., & Feng, J. (2008) Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim Feed Sci Technol. 140, 326–36. First citation in articleCrossrefGoogle Scholar

  • 33 Mulder, A.M., Connellan, P.A., Oliver, C.J., Morris, C.A., & Stevenson, L.M. (2008) Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males. Nutr Res. 28(9), 583–9. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Takeuchi, T., Shimizu, H., Ando, K., & Harada, E. (2004) Bovine lactoferrin reduces plasma triacylglycerol and NEFA accompanied by decreased hepatic cholesterol and triacylglycerol contents in rodents. Br J Nutr. 91(4), 533–8. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Li, Y.C., & Hsieh, C.C. (2014) Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model. PLoS One. 9(5), e97341. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Ghaffari, T., Nouri, M., Irannejad, E., & Rashidi, MR. (2011) Effect of vitamin E and selenium supplement on paraoxonase-1 activity, oxidized low density lipoprotein and antioxidant defense in diabetic rats. BioImpacts: BI. 1(2), 121. First citation in articleMedlineGoogle Scholar

  • 37 Nozari, S., Fathi Maroufi, N., Nouri, M., Paytakhti Oskouei, M., Shiralizade, J. & Yekani, F. et al. (2018) Decreasing serum homocysteine and hypocholesterolemic effects of bovine lactoferrin in male rat fed with high-cholesterol diet. J Cardiovasc Thorac Res. 10(4): 203–208. First citation in articleCrossref MedlineGoogle Scholar