Skip to main content
Original Communication

Vitamin D supplementation has no effect on matrix metalloproteinases-2, -9, and tissue inhibitor matrix metalloproteinase-1 in subjects with metabolic syndrome: A pilot study

Published Online:https://doi.org/10.1024/0300-9831/a000559

Abstract. The present randomized, double-blind, placebo controlled study aimed to evaluate the effect of vitamin D supplementation on matrix metalloproteinases-2, -9 (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in subjects with metabolic syndrome. Forty-six eligible subjects were randomly assigned to either vitamin D or placebo groups for 16 weeks. The participants were asked to take 50,000 IU vitamin D or matching placebo every week. Metabolic and anthropometric indices, serum MMP-2, MMP-9, TIMP-1 and high-sensitivity C-reactive protein (hsCRP) were assessed before and after intervention. Moreover, dietary intake, sun exposure and physical activity were also determined. The trial was registered at http://www.irct.ir (No. IRCT201409033140N14). Participants were 40.20 ± 4.60 y and 45.50% males. Compared to the baseline values, MMP-9 and TIMP-1 concentrations were decreased after 16 weeks in the intervention group (p = 0.03 and p = 0.04, respectively). However, the changes of MMP-2, MMP-9, TIMP-1 and hsCRP in the intervention group were not significant compared to the placebo group (p > 0.05). Furthermore, the metabolic or anthropometric indices between two study groups remained unchanged (p > 0.05). The findings of the present study demonstrated no effect of vitamin D supplementation on MMP-2, MMP-9 and TIMP-1 concentrations in subjects with metabolic syndrome. However, there is a need for more longitudinal trials to investigate the role of vitamin D on atherosclerosis and cardiovascular diseases in subjects with metabolic syndrome.

References

  • 1 Holick, M.F., Binkley, N.C., Bischoff-Ferrari, H.A., Gordon, V.M., Hanley, D.A., Heaney, R.P., Murad, M.H., & Weaver, C.M. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 96, 1911–1930. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Palacios, C., & Gonzalez, L. (2014) Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 144(Pt A), 138–145. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Holick, M.F. (2012) Evidence-based D-bate on health benefits of vitamin D revisited. Dermatoendocrinol. 4, 183–190. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Khosravi-Boroujeni, H., Ahmed, F., & Sarrafzadegan, N. (2016) Is the association between vitamin D and metabolic syndrome independent of other micronutrients. Int J Vitam Nutr Res. 20, 1–16. (ahead of print). First citation in articleGoogle Scholar

  • 5 Ströhle, A., & Bohn, T. (2016) Vitamin D status and mortality: meta-analysis of individual participant data confirms strong association. Int J Vitam Nutr Res. 10, 1–4. (ahead of print). First citation in articleGoogle Scholar

  • 6 McNeill, A.M., Rosamond, W.D., Girman, C.J., Golden, S.H., Schmidt, M.I., East, H.E., Ballantyne, C.M., & Heiss, G. (2005) The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care. 28, 385–390. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Muldowney, S., Lucey, A.J., Hill, T.R., Seamans, K.M., Taylor, N., Wallace, J.M., Horigan, G., Barnes, M.S., Bonham, M.P., Duffy, E.M., Strain, J.J., Cashman, K.D., & Kiely, M. (2012) Incremental cholecalciferol supplementation up to 15 μg/d throughout winter at 51–55 N has no effect on biomarkers of cardiovascular risk in healthy young and older adults. J Nutr. 142, 1519–1525. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Lemaître, V., O’Byrne, T.K., Borczuk, A.C., Okada, Y., Tall, A.R., & D’Armiento, J. (2001) ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest. 107, 1227–1234. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Cicero, A.F., Derosa, G., Manca, M., Bove, M., Borghi, C., & Gaddi, A.V. (2007) Vascular remodeling and prothrombotic markers in subjects affected by familial combined hyperlipidemia and/or metabolic syndrome in primary prevention for cardiovascular disease. Endothelium. 14, 193–198. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Miksztowicz, V., Muzzio, M.L., Royer, M., Prada, M., Wikinski, R., Schreier, L., & Berg, G. (2008) Increased plasma activity of metalloproteinase 2 in women with metabolic syndrome. Metabolism. 57, 1493–1496. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Heo, S.H., Cho, C.H., Kim, H.O., Jo, Y.H., Yoon, K.S., Lee, J.H., Park, J.C., Park, K.C., Ahn, T.B., Chung, K.C., Yoon, S.S., & Chang, D.I. (2011) Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: involvement of matrix metalloproteinases 2 and 9. J Clin Neurol. 7, 69–76. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Mieczkowska, J., Mosiewicz, J., Barud, W., & Kwasniewski, W. (2011) Changes in the activity of connective tissue matrix enzymes in the metabolic syndrome. Arch Med Sci. 7, 634–641. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Bahar-Shany, K., Ravid, A., & Koren, R.b. (2010) Upregulation of MMP‐9 production by TNFα in keratinocytes and its attenuation by vitamin D. J Cell Physiol. 222, 729–737. First citation in articleMedlineGoogle Scholar

  • 14 Aoshima, Y., Mizobuchi, M., Ogata, H., Kumata, C., Nakazawa, A., Kondo, F., Ono, N., Koiwa, F., Kinugasa, E., & Akizawa, T. (2012) Vitamin D receptor activators inhibit vascular smooth muscle cell mineralization induced by phosphate and TNF-α. Nephrol Dial Transplant. 27, 1800–1806. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Timms, P., Mannan, N., Hitman, G., Noonan, K., Mills, P., Aganna, E., Aganna, E., Price, C.P., & Boucher, B.J. (2002) Circulating MMP 9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? Qjm. 95, 787–796. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Selekzamani, S., Mehralizadeh, H., Ghezel, A., Salekzamani, Y., Jafarabadi, M.A., Bavil, A.S., & Gargari, B.P. (2016) Effect of high-dose vitamin D supplementation on cardiometabolic risk factors in subjects with metabolic syndrome: a randomized controlled double-blind clinical trial. J Endorcinol Invest. 39, 1303–1313. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Alberti, K., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K.A., Fruchart, J.C., James, W.P., Loria, C.M., & Smith, C. (2009) Harmonizing the metabolic syndrome a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 120, 1640–1645. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Heaney, R.P. (2014) Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr Rev. 72, 48–54. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Ross, A.C., Manson, J.E., Abrams, S.A., Aloia, J.F., Brannon, P.M., Clinton, S.K., Durazo-Arvizu, R.A., Gallagher, J.C., Gallo, R.L., & Jones, G. (2011) The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J Clin Endocrinol Metab. 96, 53–58. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Saghaei, M. (2004) Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 4, 1–6. First citation in articleCrossrefGoogle Scholar

  • 21 Craig, C.L., Marshall, A.L., Sjöström, M., Bauman, A.E., Booth, M.L., Ainsworth, B.E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J.F., & Oja, P. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 35, 1381–1395. First citation in articleCrossref MedlineGoogle Scholar

  • 22 AQ, I.P., & research committee. (2006) Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ) – short and long forms (November 2005). First citation in articleGoogle Scholar

  • 23 Nikooyeh, B., Neyestani, T.R., Farvid, M., Alavi-Majd, H., Houshiarrad, A., Kalayi, A., Shariatzadeh, N., Gharavi, A., Heravifard, S., Tayebinejad, N., Salekzamani, S., & Zahedirad, M. (2011) Daily consumption of vitamin D–or vitamin D + calcium–fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr. 93, 764–771. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Shab-Bidar, S., Neyestani, T.R., Djazayery, A., Eshraghian, M.R., Houshiarrad, A., Kalayi, A., Shariatzadeh, N., Khalaji, N., & Gharavi, A. (2012) Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab Res Rev. 28, 424–430. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Brandenburg, V.M., Vervloet, M.G., & Marx, N. (2012) The role of vitamin D in cardiovascular disease: from present evidence to future perspectives. Atherosclerosis. 225, 253–63. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Anderson, J.L., May, H.T., Horne, B.D., Bair, T.L., Hall, N.L., Carlquist, J.F., Lappé, D.L., & Muhlestein, J.B. (2010) Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol. 106, 963–968. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Van de Luijtgaarden, K., Voute, M., Hoeks, S., Bakker, E., Chonchol, M., Stolker, R., Rouwet, E.V., & Verhagen, H.J. (2012) Vitamin D deficiency may be an independent risk factor for arterial disease. Eur J Vasc Endovasc Surg. 44, 301–306. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Aleksova, A., Belfiore, R., Carriere, C., Kassem, S., La Carrubba, S., Barbati, G., & Sinagra, G. (2015) Vitamin D deficiency in patients with acute myocardial infarction: an Italian single-center study. Int J Vitam Nutr Res. 85, 23–30. First citation in articleLinkGoogle Scholar

  • 29 Safari, F., Zarei, F., Shekarforoush, S., Fekri, A., Klishadi, M.S., & Hekmatimoghaddam, S. (2015) Combined 1, 25-dihydroxy-vitamin D and resveratrol: a novel therapeutic approach to ameliorate ischemia reperfusion-induced myocardial injury. Int J Vitam Nutr Res. 85, 174–84. First citation in articleLinkGoogle Scholar

  • 30 Takeda, M., Yamashita, T., Sasaki, N., Nakajima, K., Kita, T., Shinohara, M., Ishida, T., & Hirata, K. (2010) Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler Thromb Vasc Biol. 30, 2495–2503. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Parks, W.C., Wilson, C.L., & López-Boado, Y.S. (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 4, 617–629. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Hlatky, M.A., Ashley, E., Quertermous, T., Boothroyd, D.B., Ridker, P., Southwick, A., Myers, R.M., Iribarren, C., Fortmann, S.P., & Go, A.S. (2007) Matrix metalloproteinase circulating levels, genetic polymorphisms, and susceptibility to acute myocardial infarction among patients with coronary artery disease. Am Heart J. 154, 1043–1051. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Jeon, S.B., Chun, S., Choi-Kwon, S., Chi, H.S., Nah, H.W., Kwon, S.U., Kim, W.K., & Kim, J.S. (2012) Biomarkers and location of atherosclerosis: matrix metalloproteinase-2 may be related to intracranial atherosclerosis. Atherosclerosis. 223, 442–447. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Pawlak, K., Pawlak, D., & Mysliwiec, M. (2005) Circulating β-chemokines and matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 system in hemodialyzed patients–Role of oxidative stress. Cytokine. 31, 18–24. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Santo Signorelli, S., Malaponte, G., Libra, M., Di Pino, L., Celotta, G., Bevelacqua, V., Petrina, M., Nicotra, G.S., Indelicato, M., Navolanic, P.M., Pennisi, G., & Mazzarino, M.C. (2005) Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc Med. 10, 1–6. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Fuentes, E., Fuentes, F., Vilahur, G., Badimon, L., & Palomo, I. (2013) Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediators Inflamm. 2013(11), 136584. First citation in articleMedlineGoogle Scholar

  • 37 Lacraz, S., Nicod, L., Chicheportiche, R., Welgus, H., & Dayer, J. (1995) IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest. 96, 2304–2310. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Kobayashi, H., Asano, K., Kanai, K.i., & Suzaki, H. (2005) Suppressive activity of vitamin D3 on matrix metalloproteinase production from cholesteatoma keratinocytes in vitro. Mediators Inflamm. 31, 210–215. First citation in articleCrossrefGoogle Scholar

  • 39 Wang, L.F., Tai, C.F., Chien, C.Y., Chiang, F.Y., & Chen, J.Y.F. (2015) Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis. Kaohsiung J Med Sci. 31, 235–40. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Pittarella, P., Squarzanti, D.F., Molinari, C., Invernizzi, M., Uberti, F., & Renò, F. (2015) NO-dependent proliferation and migration induced by vitamin D in HUVEC. J Steroid Biochem Mol Biol. 149, 35–42. First citation in articleCrossref MedlineGoogle Scholar