Skip to main content
Review

Higher dietary total antioxidant capacity (TAC) reduces the risk of cardio-metabolic risk factors among adults: An updated systematic review and meta-analysis

Published Online:https://doi.org/10.1024/0300-9831/a000708

Abstract:Background: Numerous studies have revealed the protective role of dietary antioxidants against hypertension and diabetes. In the current systematic review and meta-analysis, we evaluated the possible role of dietary total antioxidant capacity (TAC) against metabolic parameters in the adult population. Methods: A literature search of authentic electronic resources including PubMed, Scopus, Web of Sciences, and Cochrane had been performed to retrieve the qualified observational studies that reported the mean plus/minus the SD for the parameter in subjects of the highest versus lowest dietary TAC categories up to July 2020. Results: Totally, the number of included studies was 13 for fasting blood sugar (FBS), 12 for systolic blood pressure (SBP), and 12 for diastolic blood pressure (DBP), with the participants’ number of 26349. The results of the current study showed that being at highest category of TAC significantly reduces serum FBS (WMD: −2.381; CI: −3.445, −1.316; P<0.001), SBP (WMD: −1.080; CI: −1.458, −0.701; P<0.001) and DBP (WMD: −0.854; CI: −1.655, −0.052; P<0.001), while no significant difference in the serum insulin, HOMA-IR values, prevalence of type 2 diabetes (T2DM) (P=0.37) and hypertension (HTN) (P=0.09) was observed. Subgroup analysis revealed the geographical location, dietary assessment tool, sample size, and gender as possible sources of heterogeneity. Conclusion: Higher intake of dietary TAC was associated with reduced SBP, DBP, and FBS in the current observational studies of this meta-analysis. These findings further confirm the clinical importance of dietary antioxidants in the prevention of different metabolic disorders.

References

  • 1 Rubio CP, Hernández-Ruiz J, Martinez-Subiela S, Tvarijonaviciute A, Ceron JJ. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Vet Res. 2016;12(1):1–7. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Puchau B, Ochoa MC, Zulet MÁ, Marti A, Martínez JA, Members G. Dietary total antioxidant capacity and obesity in children and adolescents. Int J Food Sci Nutr. 2010;61(7):713–21. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Puchau B, Zulet MÁ, de Echávarri AG, Hermsdorff HHM, Martínez JA. Dietary total antioxidant capacity: a novel indicator of diet quality in healthy young adults. J Am Coll Nutr. 2009;28(6):648–56. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Serafini M, Villano D, Spera G, Pellegrini N. Redox molecules and cancer prevention: the importance of understanding the role of the antioxidant network. Nutr Cancer. 2006;56(2):232–40. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr. 2002;75(4):767–72. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–3. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Zujko ME, Waskiewicz A, Witkowska AM, Szczesniewska D, Zdrojewski T, Kozakiewicz K, et al. Dietary total antioxidant capacity and dietary polyphenol intake and prevalence of metabolic syndrome in polish adults: a nationwide study. Oxid Med Cell Longev. 2018;2018:7487816. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Puchau B, Zulet MA, de Echavarri AG, Hermsdorff HH, Martinez JA. Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition. 2010;26(5):534–41. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Sotoudeh G, Abshirini M, Bagheri F, Siassi F, Koohdani F, Aslany Z. Higher dietary total antioxidant capacity is inversely related to pre-diabetes: a case-control study. Nutrition. 2018;46:20–5. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Rossi M, Praud D, Monzio Compagnoni M, Bellocco R, Serafini M, Parpinel M, et al. Dietary non-enzymatic antioxidant capacity and the risk of myocardial infarction: a case-control study in Italy. Nutr Metab Cardiovasc Dis. 2014;24(11):1246–51. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Rautiainen S, Levitan EB, Orsini N, Akesson A, Morgenstern R, Mittleman MA, et al. Total antioxidant capacity from diet and risk of myocardial infarction: a prospective cohort of women. Am J Med. 2019;125(10):974–80. First citation in articleCrossrefGoogle Scholar

  • 12 Farhangi MA, Najafi M, Dietary total antioxidant capacity (TAC) among candidates for coronary artery bypass grafting (CABG) surgery: Emphasis to possible beneficial role of TAC on serum vitamin D. PLoS One. 2018;13(12). First citation in articleGoogle Scholar

  • 13 Villaverde P, Lajous M, MacDonald CJ, Fagherazzi G, Bonnet F, Boutron-Ruault MC. High dietary total antioxidant capacity is associated with a reduced risk of hypertension in French women. Nutr J. 2019;18(1):31–41. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Van der Schaft N, Schoufour JD, Nano J, Kiefte-de Jong JC, Muka T, et al. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, pre-diabetes and insulin resistance: the Rotterdam Study. Eur J Epidemiol. 2019;34(9):853–61. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Gifkins D, Olson SH, Demissie K, Lu SE, Kong ANT, Bandera EV. Total and individual antioxidant intake and endometrial cancer risk: Results from a population-based case-control study in New Jersey. Cancer Causes Control. 2012;23(6):887–95. First citation in articleCrossref MedlineGoogle Scholar

  • 18 de Oliveira DG, de Faria Ghetti F, Moreira APB, Hermsdorff HHM, de Oliveira JM, de Castro Ferreira L. Association between dietary total antioxidant capacity and hepatocellular ballooning in nonalcoholic steatohepatitis: a cross-sectional study. Eur J Nutr. 2018;58(6):2263–70. https://doi.org/10.1007/s00394-018-1776-0. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Kim K, Vance T, Chen MH, Chun OK. Dietary total antioxidant capacity is inversely associated with all-cause and cardiovascular disease death of US adults. Eur J Nutr. 2018;57(7):2469–76. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Kim K, Vance TM, Chun OK. Greater total antioxidant capacity from diet and supplements is associated with a less atherogenic blood profile in U.S. Adults. Nutrients. 2016;8(1):15–29. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Vance TM, Wang Y, Su LJ, Fontham ET, Steck SE, Arab L, et al. Dietary total antioxidant capacity is inversely associated with prostate cancer aggressiveness in a population-based study. Nutr Cancer. 2016;68(2):214–24. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Wright ME, Mayne ST, Stolzenberg-Solomon RZ, Li Z, Pietinen P, Taylor PR, et al. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol. 2004;160(1):68–76. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Asghari G, Yuzbashian E, Shahemi S, Gaeini Z, Mirmiran P, Azizi F. Dietary total antioxidant capacity and incidence of chronic kidney disease in subjects with dysglycemia: Tehran Lipid and Glucose Study. Eur J Nutr. 2018;57(7):2377–85. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Bahadoran Z, Golzarand M, Mirmiran P, Shiva N, Azizi F. Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr Metab. 2012;9(1):70–9. First citation in articleCrossrefGoogle Scholar

  • 25 Costanzo S, De Curtis A, di Niro V, Olivieri M, Morena M, De Filippo CM, et al. Postoperative atrial fibrillation and total dietary antioxidant capacity in patients undergoing cardiac surgery: the Polyphemus Observational Study. J Thorac Cardiovasc Surg. 2015;149(4):1175–82. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Devore EE, Feskens E, Ikram MA, den Heijer T, Vernooij M, van der Lijn F, et al. Total antioxidant capacity of the diet and major neurologic outcomes in older adults. Neurology. 2013;80(10):904–10. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Devore EE, Kang JH, Stampfer MJ, Grodstein F. Total antioxidant capacity of diet in relation to cognitive function and decline. Am J Clin Nutr. 2010;92(5):1157–64. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Galarregui C, Zulet MA, Cantero I, Marin-Alejandre BA, Monreal JI, Elorz M, et al. Interplay of glycemic index, glycemic load, and dietary antioxidant capacity with insulin resistance in subjects with a cardiometabolic risk profile. Int J Mol Sci. 2018;19(11):3662–74. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Ham D, Jun S, Kang M, Shin S, Wie GA, Baik HW, et al. Association of total dietary antioxidant capacity with oxidative stress and metabolic markers among patients with metabolic syndrome. J Nutr Health. 2017;50(3):246–56. First citation in articleCrossrefGoogle Scholar

  • 30 Henriquez-Sanchez P, Sanchez-Villegas A, Ruano-Rodriguez C, Gea A, Lamuela-Raventos RM, Estruch R, et al. Dietary total antioxidant capacity and mortality in the PREDIMED study. Eur J Nutr. 2016;55(1):227–36. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Hermsdorff HH, Puchau B, Volp AC, Barbosa KB, Bressan J, Zulet MA, et al. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab. 2011;8(1):59–67. First citation in articleCrossrefGoogle Scholar

  • 32 Luu HN, Wen W, Li H, Dai Q, Yang G, Cai Q, et al. Are dietary antioxidant intake indices correlated to oxidative stress and inflammatory marker Levels? Antioxid Redox Sign. 2015;22(11):951–9. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Mancini FR, Affret A, Dow C, Balkau B, Bonnet F, Boutron-Ruault MC, et al. Dietary antioxidant capacity and risk of type 2 diabetes in the large prospective E3N-EPIC cohort. Diabetologia. 2018;61(2):308–16. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Maugeri A, Hruskova J, Jakubik J, Kunzova S, Sochor O, Barchitta M, et al.. Dietary antioxidant intake decreases carotid intima media thickness in women but not in men: A cross-sectional assessment in the Kardiovize study. Free Radic Biol Med. 2019;131:274–81. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Rautiainen S, Levitan EB, Mittleman MA, Wolk A. Total antioxidant capacity of diet and risk of heart failure: a population-based prospective cohort of women. Am J Med. 2013;126(6):494–500. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Rautiainen S, Lindblad BE, Morgenstern R, Wolk A. Total antioxidant capacity of the diet and risk of age-related cataract: a population-based prospective cohort of women. JAMA Ophthalmol. 2014;132(3):247–52. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Aghamohammadi V, Sajjadi SF, Jarrahi F, Abdollahi A, Mirzaei K. The association between total antioxidant capacity and resting metabolic rate (RMR)/respiratory quotient (RQ) in overweight and obese woman. Diabetes Metab Syndr. 2019;13(4):2763–7. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Wang Y, Yang M, Lee SG, Davis CG, Koo SI, Chun OK. Dietary total antioxidant capacity is associated with diet and plasma antioxidant status in healthy young adults. J Acad Nutr Diet. 2012;112(10):1626–35. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Hantikainen E, Grotta A, Serafini M, Trolle Lagerros Y, Nyren O, Ye W, et al. Dietary non-enzymatic antioxidant capacity and the risk of myocardial infarction: the Swedish National March Cohort. Int J Epidemiol. 2018;47(6):1947–55. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and b-cell damage in rat pancreas. Pharmacol Res. 2005;51:117–23. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89–96. First citation in articleMedlineGoogle Scholar

  • 42 Kizhakekuttu TJ, Widlansky ME. Natural antioxidants and hypertension: promise and challenges. Cardiovasc Ther. 2010;28(4):e20–e32. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Orr-Walker BJ, Horne AM, Evans MC, Grey AB, Murray MA, McNeil AR. Hormone replacement therapy causes a respiratory alkalosis in normal postmenopausal women. J Clin Endocrinol Metabol. 1999;84(6):1997–2001. First citation in articleMedlineGoogle Scholar

  • 44 Huxley V, Hay M. Mechanisms of sex differences in hypertension, in Molecular Mechanisms in Hypertension. CRC Press. 2006;422–9. First citation in articleGoogle Scholar

  • 45 Mueller M, Hobiger S, Jungbauer A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010;122(4):987–96. First citation in articleCrossrefGoogle Scholar

  • 46 Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014;36:1–8. First citation in articleCrossrefGoogle Scholar

  • 47 Slimani N, Fahey M, Welch A, Wirfält E, Stripp C, Bergström E. Diversity of dietary patterns observed in the European Prospective Investigation into Cancer and Nutrition (EPIC) project. Public Health Nutr. 2002;5:1311–28. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Witkowska AM, Waskiewicz A, Zujko ME, Szczesniewska D, Pajak A, Stepaniak U, et al. Dietary polyphenol intake, but not the dietary total antioxidant capacity, is inversely related to cardiovascular disease in postmenopausal polish women: results of WOBASZ and WOBASZ II studies. Oxid Med Cell Longev. 2017;2017. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Colarusso L, Serafini M, Lagerros YT, Nyren O, La Vecchia C, Rossi M, et al. Dietary antioxidant capacity and risk for stroke in a prospective cohort study of Swedish men and women. Nutrition. 2017;33:234–9. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Bastide N, Dartois L, Dyevre V, Dossus L, Fagherazzi G, Serafini M, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Abbasalizad Farhangi M, Vajdi M. Dietary total antioxidant capacity (TAC) significantly reduces the risk of site-specific cancers. an updated systematic review and meta-analysis. Nutr Cancer. 2020;1–19. First citation in articleGoogle Scholar