Skip to main content
Review

A medical and molecular approach to kefir as a therapeutic agent of human microbiota

A review

Published Online:https://doi.org/10.1024/0300-9831/a000765

Abstract: The imbalanced microbial composition called dysbiosis constitutes a tendency related to different kind of human diseases. To overcome the disadvantages of dysbiosis, the consumption of probiotics is an emerging and promising topic of the last decade. Kefir is a probiotic fermented beverage produced from the fermentation of kefir grains with changing varieties of milk and displays a symbiotic association of bacteria and yeast. The discovery of the concept that fermented foods/beverages such as kefir could modify gut microbiota in humans has widened the borders of precision medicine and now microbiome therapeutics can be considered as a significant part of this field. Kefir seems to have potential to guide and manipulate future replacement/complementary therapies with a variety of beneficial biological/medical properties it has. The aim of this review was a comprehensive recapitulation of probiotic beverage kefir’s significant properties mainly focusing of antioxidative, immunomodulatory, apoptotic, antitumor and neuroprotective properties. Apoptotic/antimetastatic effects are regulated at the molecular level by increases in TGF-β1, caspase-3, p53, Bax, Bax:Bcl-2 ratio, p21 and decreases in TGF-α, Bcl-2 and MMP polarization. Neuroprotective effects are revealed upon upregulation of SOD/catalase and anti-inflammatory Treg cells, decreases in repetitive behavior and modulation of apoptotic genes. Besides these significant features that may offer advantages in supplementary cancer therapies, the scope was also extended to recent emerging medical topics and also discussed and evaluated the concept of “psychobiotics”. The therapeutic potential of psychobiotic effect is majorly attributed to the increased ratios of Clostridium butyricum, Lactobacillus and Bifidobacterium.

References

  • 1 Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics history. J Clin Gastroenterol. 2016;50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13–15, 2015:S116–S119. First citation in articleCrossrefGoogle Scholar

  • 2 Maleki Vareki S, Chanyi RM, Abdur-Rashid K, Brennan L, Burton JP. Moving on from Metchnikoff: thinking about microbiome therapeutics in cancer. Ecancermedicalscience. 2018;12:867. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Stiemsma LT, Nakamura RE, Nguyen JG, Michels KB. Does consumption of fermented foods modify the human gut microbiota? J Nutr. 2020;150(7):1680–92. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Kabak B, Dobson AD. An introduction to the traditional fermented foods and beverages of Turkey. Crit Rev Food Sci Nutr. 2011;51(3):248–60. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Kumar MR, Yeap SK, Lee HC, Mohamad NE, Nazirul Mubin Aziz M, et al. Selected kefir water from Malaysia attenuates hydrogen peroxide-induced oxidative stress by upregulating endogenous antioxidant levels in SH-SY5Y neuroblastoma cells. Antioxidants (Basel). 2021;10(6):940. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Sharifi M, Moridnia A, Mortazavi D, Salehi M, Bagheri M, Sheikhi A. Kefir: a powerful probiotics with anticancer properties. Med Oncol. 2017;34(11):183. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Halle C, Leroi F, Dousset X, Pidoux M. Les Kefirs: Desassociations Bacteries. Lactiques-levures. Bacteries Lactiques: Aspects fondamentaux et technologiques. (Vol. 2, eds.) In De Roissard HLuquet FM, 1994, 169–182, Uriage, France: Lorica. First citation in articleGoogle Scholar

  • 9 Bensmira M, Nsabimana C, Jiang B. Effects of fermentation conditions and homogenization pressure on the rheological properties of Kefir. LWT Food Sci Technol. 2010;43:1180–4. First citation in articleCrossrefGoogle Scholar

  • 10 Prado MR, Blandón LM, Vandenberghe LP, Rodrigues C, Castro GR, Thomaz-Soccol V, et al. Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol. 2015;6:1177. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Ozcan A, Kaya N, Atakisi O, Karapehlivan M, Atakisi E, Cenesiz S. Effect of kefir on the oxidative stress due to lead in rats. J Appl Anim Res. 2009;35(1):91–3. First citation in articleCrossrefGoogle Scholar

  • 12 Liu JR, Lin YY, Chen MJ, Chen LJ, Lin CW. Antioxidative Activities of Kefir. Asian-Aust J Anim Sci. 2005;18(4):567–73. First citation in articleCrossrefGoogle Scholar

  • 13 Najgebauer-Lejko D, Sady M. Estimation of the antioxidant activity of the commercially available fermented milks. Acta Sci Pol Technol Aliment. 2015;14(4):387–96. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Grishina A, Kulikova I, Alieva L, Dodson A, Rowland I, Jin J. Antigenotoxic effect of kefir and ayran supernatants on fecal water-induced DNA damage in human colon cells. Nutr Cancer. 2011;63(1):73–9. First citation in articleMedlineGoogle Scholar

  • 15 Carullo G, Spizzirri UG, Montopoli M, Cocetta V, Armentano B, Tinazzi M, et al. Milk kefir enriched with inulin-grafted seed extract from white wine pomace: chemical characterisation, antioxidant profile and in vitro gastrointestinal digestion. Int J Food Sci Technol. 2022;57(7):4086–95. First citation in articleCrossrefGoogle Scholar

  • 16 Hatmal MM, Nuirat A, Zihlif MA, Taha MO. Exploring the influence of culture conditions on kefir’s anticancer properties. J Dairy Sci. 2018;101:3771–7. First citation in articleCrossref MedlineGoogle Scholar

  • 17 de Moreno de Leblanc A, Matar C, Farnworth E, Perdigón G. Study of immune cells involved in the antitumor effect of kefir in a murine breast cancer model. J Dairy Sci. 2007;90(4):1920–8. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Chen C, Chan HM, Kubow S. Kefir extracts suppress in vitro proliferation of estrogen-dependent human breast cancer cells but not normal mammary epithelial cells. J Med Food. 2007;10(3):416–22. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Zamberi NR, Abu N, Mohamed NE, Nordin N, Keong YS, Beh BK, et al. The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr Cancer Ther. 2016;15(4):NP53–NP66. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Maalouf K, Baydoun E, Rizk S. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes. Cancer Manag Res. 2011;3:39–47. First citation in articleMedlineGoogle Scholar

  • 21 Ghoneum M, Gimzewski J. Apoptotic effect of a novel kefir product, PFT, on multidrug-resistant myeloid leukemia cells via a hole-piercing mechanism. Int J Oncol. 2014;44(3):830–7. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Khoury N, El-Hayek S, Tarras O, El-Sabban M, El-Sibai M, Rizk S. Kefir exhibits anti-proliferative and pro-apoptotic effects on colon adenocarcinoma cells with no significant effects on cell migration and invasion. Int J Oncol. 2014;45(5):2117–27. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Ghoneum M, Felo N. Selective induction of apoptosis in human gastric cancer cells by Lactobacillus kefiri (PFT), a novel kefir product. Oncol Rep. 2015;34(4):1659–66. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Jalali F, Sharifi M, Salehi R. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia. Med Oncol. 2016;33(1):7. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Melo AFP, Mendonça MCP, Rosa-Castro RM. The protective effects of fermented kefir milk on azoxymethane-induced aberrant crypt formation in mice colon. Tissue Cell. 2018;52:51–6. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Esener O, Balkan BM, Armutak EI, Uvez A, Yildiz G, Hafizoglu M, et al. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice. Biotech Histochem. 2018;93(6):424–31. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Bozkurt E, Atay E, Pektaş G, Ertekin A, Vurmaz A, Korkmaz ÖA, et al. Potential anti-tumor activity of kefir-induced juglone and resveratrol fractions against ehrlich ascites carcinoma-bearing BALB/C Mice. Iran J Pharm Res. 2020;19(3):358–69. First citation in articleMedlineGoogle Scholar

  • 28 Badr El-Din NK, Shabana SM, Abdulmajeed BA, Ghoneum M. A novel kefir product (PFT) inhibits Ehrlich ascites carcinoma in mice via induction of apoptosis and immunomodulation. BMC Complement Med Ther. 2020;20(1):127. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Fatahi A, Soleimani N, Afrough P. Anticancer activity of kefir on glioblastoma cancer cell as a new treatment. Int J Food Sci. 2021;2021:8180742. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Stewart LK, Smoak P, Hydock DS, Hayward R, O’Brien K, Lisano JK, et al. Milk and kefir maintain aspects of health during doxorubicin treatment in rats. J Dairy Sci. 2019;102(3):1910–7. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Desai VG, Herman EH, Moland CL, Branham WS, Lewis SM, Davis KJ, et al. Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicol Appl Pharmacol. 2013;266(1):109–21. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Koohian F, Shahbazi-Gahrouei D, Koohiyan M, Shanei A. The radioprotective effect of ascorbic acid and kefir against genotoxicity induced by exposure in mice blood lymphocytes. Nutr Cancer. 2021;73(3):534–40. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Smoak P, Harman N, Flores V, Kisiolek J, Pullen NA, Lisano J, Hayward R, Stewart LK. Kefir is a viable exercise recovery beverage for cancer survivors enrolled in a structured exercise program. Med Sci Sports Exerc. 2021;53(10):2045–53. First citation in articleCrossref MedlineGoogle Scholar

  • 34 van de Wouw M, Walsh CJ, Vigano GMD, Lyte JM, Boehme M, Gual-Grau A, et al. Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain Behav Immun. 2021;97:119–34. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720–6. First citation in articleCrossref MedlineGoogle Scholar

  • 36 van de Wouw M, Walsh AM, Crispie F, van Leuven L, Lyte JM, Boehme M, et al. Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. Microbiome. 2020;8(1):67. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Miyaoka T, Kanayama M, Wake R, Hashioka S, Hayashida M, Nagahama M, et al. Clostridium butyricum MIYAIRI 588 as adjunctive therapy for treatment-resistant major depressive disorder: a prospective open-label trial. Clin Neuropharmacol. 2018;41(5):151–5. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–22. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Karakula-Juchnowicz H, Rog J, Juchnowicz D, Łoniewski I, Skonieczna-Żydecka K, Krukow P, et al. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): a 12-week, randomized, double-blind, and placebo-controlled clinical study protocol. Nutr J. 2019;18(1):50. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7(1):13537. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Tian P, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J Nutr Biochem. 2019;66:43–51. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry. 2016;6(11):e939. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Trudeau F, Gilbert K, Tremblay A, Tompkins TA, Godbout R, Rousseau G. Bifidobacterium longum R0175 attenuates post-myocardial infarction depressive-like behaviour in rats. PLoS One. 2019;14(4):e0215101. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Bifidobacterium and Lactobacillus counts in the gut microbiota of patients with bipolar disorder and healthy controls. Front Psychiatry. 2019;9:730. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Yuan X, Zhang P, Wang Y, Liu Y, Li X, Kumar BU, et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res. 2018;201:299–306. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One. 2013;8(7):e69371. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Nalbantoglu U, Cakar A, Dogan H, Abaci N, Ustek D, Sayood K, Can H. Metagenomic analysis of the microbial community in kefir grains. Food Microbiol. 2014;41:42–51. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Wang X, Xiao J, Jia Y, Pan Y, Wang Y. Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon. 2018;4(6):e00649. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Kalamaki MS, Angelidis AS. High-throughput, sequence-based analysis of the microbiota of greek kefir grains from two geographic regions. Food Technol Biotechnol. 2020;58(2):138–46. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al. Metagenomic and phytochemical analyses of kefir water and its subchronic toxicity study in BALB/c mice. BMC Complement Med Ther. 2021;21(1):183. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Kazou M, Grafakou A, Tsakalidou E, Georgalaki M. Zooming into the microbiota of home-made and industrial kefir produced in greece using classical microbiological and amplicon-based metagenomics analyses. Front Microbiol. 2021;12:621069. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Tenorio-Salgado S, Castelán-Sánchez HG, Dávila-Ramos S, Huerta-Saquero A, Rodríguez-Morales S, Merino-Pérez E, et al. Metagenomic analysis and antimicrobial activity of two fermented milk kefir samples. Microbiologyopen. 2021;10(2):e1183. First citation in articleCrossref MedlineGoogle Scholar

  • 54 Biçer Y, Telli AE, Sönmez G, Turkal G, Telli N, Uçar G. Comparison of commercial and traditional kefir microbiota using metagenomic analysis. Int J Dairy Technol. 2021;74(3):528–34. First citation in articleCrossrefGoogle Scholar

  • 55 Yegin Z, Yurt MNZ, Tasbasi BB, Acar EE, Altunbas O, Ucak S, et al. Determination of bacterial community structure of Turkish kefir beverages via metagenomic approach. Int Dairy J. 2022;129:105337. First citation in articleCrossrefGoogle Scholar