Skip to main content
Research report

The Influence of Recreational Drug Use on Experiences of the Passage of Time

Published Online:https://doi.org/10.1024/0939-5911/a000761

Abstract: Background: Laboratory research suggests that alcohol, marijuana, cocaine and MDMA influence the processing of time. Anecdotal reports of recreational drug use also often include descriptions of changes in the speed of the passage of time. Despite this, little is known about how and why recreational drug use influences the passage of time. Aim: To examine retrospective self-reports of the passage of time during a previous instance of alcohol, cannabis, cocaine or MDMA use. To establish the effect of substance use frequency, substance dose, anxiety, depression and stress on the passage of time. Methods: Using an online questionnaire, passage of time judgments were collected for the current day as well as recent instances of alcohol, cocaine, marijuana or MDMA use. Measures of affect, typical substance use frequency and substance use amount were taken. Results: Time was remembered as passing significantly more quickly than normal during alcohol, cocaine and MDMA use. Marijuana was associated with time passing more slowly than normal. Regression analysis revealed that drug induced distortions to the passage of time use were not predicted by drug use frequency, dose, depression, anxiety or stress. Furthermore, comparison of recreational drug users and non-users did not indicate any long-term effects of drug use on the passage of time. Conclusions: The results suggest that whilst distortions to the passage of time are a common feature of drug use, their causes are complex.


Der Einfluss des Substanzkonsums auf das Zeitempfinden

Zusammenfassung: Hintergrund: Laboruntersuchungen legen nahe, dass Alkohol, Marihuana, Kokain und MDMA das Zeitempfinden beeinflussen. In anekdotische Berichten über den Konsum dieser Substanzen wird häufig beschrieben, dass Veränderungen in der Geschwindigkeit des Zeitablaufs wahrgenommen werden. Dennoch ist wenig darüber bekannt, wie und warum der Konsum von Drogen den Zeitablauf beeinflusst. Ziel: Untersuchung retrospektiver Selbstberichte über das subjektiv wahrgenommene Vergehen der Zeit während eines vorangegangenen Alkohol-, Cannabis-, Kokain- oder MDMA-Konsums. Dabei soll geprüft werden, wie sich Häufigkeit des Substanzkonsums, Dosis, Angst, Depression und Stress auf die Wahrnehmung des Zeitablaufs auswirken. Methoden: Mithilfe eines Online-Fragebogens wurden Zeiteinschätzungen für den aktuellen Tag sowie für die am kürzesten zurückliegenden Fälle von Alkohol-, Kokain-, Marihuana- oder MDMA-Konsum erhoben. Gemessen wurden der Affekt sowie die typische Häufigkeit und Menge des Substanzkonsums. Ergebnisse: Bei Alkohol-, Kokain- und MDMA-Konsum verging die Zeit in der Erinnerung der Befragten deutlich schneller, bei Konsum von Marihuana dagegen langsamer als normalerweise. Die Regressionsanalyse ergab, dass weder Häufigkeit und Dosis des Substanzkonsums, noch Depression, Angst und Stress Prädiktoren für drogeninduzierte Verzerrungen des Zeitablaufs waren. Darüber hinaus ergab der Vergleich von Drogenkonsumenten und Nicht-Konsumenten, dass der Konsum von Drogen keine langfristigen Auswirkungen auf das Zeitempfinden hat. Schlussfolgerungen: Die Ergebnisse weisen darauf hin, dass es sich bei den Verzerrungen in der Wahrnehmung des Zeitablaufs zwar um eine häufige Folge des Drogenkonsums handelt, ihre Ursachen jedoch komplex sind.

Literature

  • Ashare, R. L. & Kable, J. W. (2015). Sex differences in time perception during smoking abstinence. Nicotine & Tobacco Research, 17 (4), 449–454. First citation in articleCrossrefGoogle Scholar

  • Atakan, Z., Morrison, P., Bossong, M. G., Martin-Santos, R. & Crippa, J. A. (2012). The effect of cannabis on perception of time: a critical review. Current pharmaceutical design, 18 (32), 4915–4922. First citation in articleCrossrefGoogle Scholar

  • Baker, T. B., Japuntich, S. J., Hogle, J. M., McCarthy, D. E. & Curtin, J. J. (2006). Pharmacologic and behavioral withdrawal from addictive drugs. Current Directions in Psychological Science, 15, 232–236. First citation in articleCrossrefGoogle Scholar

  • Baylen, C. A. & Rosenberg, H. (2006). A review of the acute subjective effects of MDMA/ecstasy. Addiction, 101 (7), 933–947. First citation in articleCrossrefGoogle Scholar

  • Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N. & Berke, J. D. et al. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19 (3), 591–611. First citation in articleCrossrefGoogle Scholar

  • Buhusi, C. V. & Meck, W. H. (2002). Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behavioral Neuroscience, 116 (2), 291–297. First citation in articleCrossrefGoogle Scholar

  • Cheng, R. K., MacDonald, C. J. & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacology Biochemistry and Behavior, 85 (1), 114–122. First citation in articleCrossrefGoogle Scholar

  • Cheng, R. K., Ali, Y. M. & Meck, W. H. (2007). Ketamine “unlocks” the reduced clock-speed effects of cocaine following extended training: evidence for dopamine–glutamate interactions in timing and time perception. Neurobiology of learning and memory, 88 (2), 149–159. First citation in articleCrossrefGoogle Scholar

  • Couchman, L., Frinculescu, A., Sobreira, C., Shine, T., Ramsey, J. & Hecht, M. et al. (2019). Variability in content and dissolution profiles of MDMA tablets collected in the UK between 2001 and 2018–A potential risk to users? Drug Testing and Analysis, 11 (8), 1172–1182. First citation in articleCrossrefGoogle Scholar

  • Coull, J. T., Morgan, H., Cambridge, V. C., Moore, J. W., Giorlando, F. & Adapa, R. et al. (2011). Ketamine perturbs perception of the flow of time in healthy volunteers. Psychopharmacology, 218 (3), 543–556. First citation in articleCrossrefGoogle Scholar

  • Daniels, C. W., Watterson, E., Garcia, R., Mazur, G. J., Brackney, R. J. & Sanabria, F. (2015). Revisiting the effect of nicotine on interval timing. Behavioural Brain Research, 283, 238–250. First citation in articleCrossrefGoogle Scholar

  • Droit-Volet, S. & Wearden, J. (2016). Passage of time judgments are not duration judgments: Evidence from a study using experience sampling methodology. Frontiers in Psychology, 7, 176. First citation in articleCrossrefGoogle Scholar

  • Dumont, G. J. H. & Verkes, R. J. (2006). A review of acute effects of 3,4-methylenedioxymethamphetamine in healthy volunteers. Journal of Psychopharmacology, 20 (2), 176–187. First citation in articleCrossrefGoogle Scholar

  • Harrison, L. (1997). The validity of self-reported drug use in survey research: an overview and critique of research methods. NIDA Research Monographs, 167, 17–36. First citation in articleGoogle Scholar

  • Hicks, R. E., Gualtieri, T., Mayo Jr, J. P. & Perez-Reyes, M. (1984). Cannabis, atropine, and temporal information processing. Neuropsychobiology, 12 (4), 229–237. First citation in articleCrossrefGoogle Scholar

  • Hinton, S. C. & Meck, W. H. (1996). Increasing the speed of an internal clock: the effects of nicotine on interval timing. Drug Development Research, 38 (3–4), 204–211. First citation in articleCrossrefGoogle Scholar

  • Kroon, E., Kuhns, L. & Cousijn, J. (2021). The short-term and long-term effects of cannabis on cognition: recent advances in the field. Current Opinion in Psychology, 38, 49–55. First citation in articleCrossrefGoogle Scholar

  • Lapp, W. M., Collins, R. L., Zywiak, W. H. & Izzo, C. V. (1994). Psychopharmacological effects of alcohol on time perception: the extended balanced placebo design. Journal of Studies on Alcohol, 55 (1), 96–112. First citation in articleCrossrefGoogle Scholar

  • Lovibond, P. F. & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33 (3), 335–343. First citation in articleCrossrefGoogle Scholar

  • Matell, M. S., King, G. R. & Meck, W. H. (2004). Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behavioral Neuroscience, 118 (1), 150–156. First citation in articleCrossrefGoogle Scholar

  • Matell, M. S., Bateson, M. & Meck, W. H. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology, 188 (2), 201–212. First citation in articleCrossrefGoogle Scholar

  • Mathew, R. J., Wilson, W. H., Turkington, T. G. & Coleman, R. E. (1998). Cerebellar activity and disturbed time sense after THC. Brain Research, 797 (2), 183–189. First citation in articleCrossrefGoogle Scholar

  • Marinho, V., Oliveira, T., Rocha, K., Ribeiro, J., Magalhães, F. & Bento, T. et al. (2018). The dopaminergic system dynamic in the time perception: a review of the evidence. International Journal of Neuroscience, 128 (3), 262–282. First citation in articleCrossrefGoogle Scholar

  • McDonald, J., Schleifer, L., Richards, J. B. & de Wit, H. (2003). Effects of THC on behavioral measures of impulsivity in humans. Neuropsychopharmacology, 28 (7), 1356–1365. First citation in articleCrossrefGoogle Scholar

  • Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive brain research, 3 (3–4), 227–242. First citation in articleCrossrefGoogle Scholar

  • Meck, W. H., Cheng, R. K., MacDonald, C. J., Gainetdinov, R. R., Caron, M. G. & Çevik, M. Ö. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 62 (3), 1221–1229. First citation in articleCrossrefGoogle Scholar

  • Miller, M. A., Bershad, A. K. & de Wit, H. (2015). Drug effects on responses to emotional facial expressions: recent findings. Behavioural Pharmacology, 26, 571–579. First citation in articleCrossrefGoogle Scholar

  • Moore, J. W., Cambridge, V. C., Morgan, H., Giorlando, F., Adapa, R. & Fletcher, P. C. (2013). Time, action and psychosis: using subjective time to investigate the effects of ketamine on sense of agency. Neuropsychologia, 51 (2), 377–384. First citation in articleCrossrefGoogle Scholar

  • Muro, A., Cladellas, R. & Castellà, J. (2021). Cannabis and Its Different Strains. Experimental Psychology, 68 (2), 5766. First citation in articleLinkGoogle Scholar

  • Ogden, R. (2021). Distortions to the passage of time during England’s second national lockdown: A role for depression. PLOS ONE, 16 (4), e0250412. First citation in articleCrossrefGoogle Scholar

  • Ogden, R. S. (2020). The passage of time during the UK Covid-19 lockdown. PLOS ONE, 15 (7), e0235871. First citation in articleCrossrefGoogle Scholar

  • Ogden, R. S. & Montgomery, C. (2012). High time. Psychologist, 25 (8), 590–593. First citation in articleGoogle Scholar

  • Ogden, R. S., Wearden, J. H., Gallagher, D. T. & Montgomery, C. (2011). The effect of alcohol administration on human timing: a comparison of prospective timing, retrospective timing and passage of time judgements. Acta Psychologica, 138 (1), 254–262. First citation in articleCrossrefGoogle Scholar

  • Office for National Statistics (ONS). (2020). Drug misuse in England and Wales: Year ending March 2020. Available from https://www.ons.gov.uk/peoplepopulationandcommunity/cri meandjustice/articles/drugmisuseinenglandandwales/year endingmarch2020 First citation in articleGoogle Scholar

  • Paasche, C., Weibel, S., Wittmann, M. & Lalanne, L. (2019). Time perception and impulsivity: A proposed relationship in addictive disorders. Neuroscience & Biobehavioral Reviews, 106, 182–201. First citation in articleCrossrefGoogle Scholar

  • Rammsayer, T. H. & Vogel, W. H. (1992). Pharmacological properties of the internal clock underlying time perception in humans. Neuropsychobiology, 26, 71–80. First citation in articleCrossrefGoogle Scholar

  • Ranganathan, M. & D’Souza, D. C. (2006). The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology, 188, 425–444. First citation in articleCrossrefGoogle Scholar

  • Roberts, C., Jones, A. & Montgomery, C. (2016). Meta-analysis of executive functioning in ecstasy/polydrug users. Psychological Medicine, 46 (8), 1581–1596. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. E. & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47, 33–46. First citation in articleCrossrefGoogle Scholar

  • Sewell, R. A., Schnakenberg, A., Elander, J., Radhakrishnan, R., Williams, A. & Skosnik, P. D. et al. (2013). Acute effects of THC on time perception in frequent and infrequent cannabis users. Psychopharmacology, 226 (2), 401–413. First citation in articleCrossrefGoogle Scholar

  • Spronk, D. B., van Wel, J. H., Ramaekers, J. G. & Verkes, R. J. (2013). Characterizing the cognitive effects of cocaine: a comprehensive review. Neuroscience and Biobehavioual Reviews, 37 (8), 1838–1859. First citation in articleCrossrefGoogle Scholar

  • Taylor, S. (2020). When seconds turn into minutes: Time expansion experiences in altered states of consciousness. Journal of Humanistic Psychology. Advance online publication. https://doi.org/10.1177/0022167820917484 First citation in articleGoogle Scholar

  • Terry, P., Doumas, M., Desai, R. I. & Wing, A. M. (2009). Dissociations between motor timing, motor coordination, and time perception after the administration of alcohol or caffeine. Psychopharmacology, 202, 719–729. First citation in articleCrossrefGoogle Scholar

  • Tinklenberg, J. R., Roth, W. T. & Kopell, B. S. (1976). Marijuana and ethanol: Differential effects on time perception, heart rate and subjective response. Psychopharmacology, 49, 275–279. First citation in articleCrossrefGoogle Scholar

  • Vonmoos, M., Hulka, L. M., Preller, K. H., Minder, F., Baumgartner, M. R. & Quednow, B. B. (2014). Cognitive impairment in cocaine users is drug-induced but partially reversible: evidence from a longitudinal study. Neuropsychopharmacology, 39 (9), 2200–2210. First citation in articleCrossrefGoogle Scholar

  • Vrolijk, R. & Smit-Rigter, L. (2021). Annual-Report-DIMS-2020. Available from https://www.researchgate.net/publication/351​727168_Annual-Report-DIMS-2020 First citation in articleGoogle Scholar

  • Wearden, J., O’Donoghue, A., Ogden, R. & Montgomery, C. (2014). Subjective duration in the laboratory and the world outside. Subjective time: The philosophy, psychology, and neuroscience of temporality, 4, 287–306. First citation in articleGoogle Scholar

  • Wearden, J. (2016). Retrospective timing and passage of time judgements. In J. Wearden (Hrsg.), The psychology of time perception (pp. 117–141). London: Palgrave Macmillan. First citation in articleCrossrefGoogle Scholar

  • de Wit, H. & Sayette, M. (2018). Considering the context: social factors in responses to drugs in humans. Psychopharmacology, 235 (4), 935–945. First citation in articleCrossrefGoogle Scholar

  • Wittmann, M., Leland, D.S., Churan, J. & Paulus, M.P. (2007). Impaired time perception and motor timing in stimulant-dependent subjects. Drug and alcohol dependence, 90 (2–3), 183–192. First citation in articleGoogle Scholar

  • Wittmann, M. & Paulus, M. P. (2008). Decision making, impulsivity and time perception. Trends in Cognitive Sciences, 12 (1), 7–12. First citation in articleCrossrefGoogle Scholar

  • Wittmann, M. & Paulus, M.P. (2016). How the experience of time shapes decision-making. In M. Reuter & C. Montag (Eds.), Neuroeconomics (pp. 133–144). Berlin, Heidelberg: Springer. First citation in articleCrossrefGoogle Scholar

  • Zhang, M., Zhao, D., Zhang, Z., Cao, X., Yin, L. & Liu, Y. et al. (2019). Time perception deficits and its dose-dependent effect in methamphetamine dependents with short-term abstinence. Science Advances, 5 (10), eaax6916. First citation in articleCrossrefGoogle Scholar