Skip to main content
Übersichtsarbeit

Das Darmmikrobiom und seine klinischen Implikationen im Kontext der Anorexia nervosa

Published Online:https://doi.org/10.1024/1422-4917/a000830

Zusammenfassung. Die vielseitigen Wechselwirkungen des Darmmikrobioms mit dem Stoffwechsel, dem Immunsystem und dem Gehirn des Wirtes werden zunehmend zu einem relevanten Forschungsschwerpunkt. Studien legen einen Zusammenhang zwischen einem veränderten Darmmikrobiom und sowohl somatischen Erkrankungen wie Colitis ulcerosa, Morbus Crohn und Diabetes als auch psychischen Erkrankungen wie Ängsten und Depression nahe. Auch Patient_innen mit Anorexia nervosa (AN) zeigen deutliche Veränderungen des Darmmikrobioms. Diese Veränderungen scheinen unter anderem mit einer abweichenden Energieaufnahme aus der Nahrung, immunologischen und entzündlichen Prozessen, genetischer Prädisposition, hormonellen Veränderungen und einer möglicherweise erhöhten Darmpermeabilität assoziiert zu sein. Transplantation von Stuhl von Patient_innen mit AN in Ratten führte zu einer Appetitminderung und Gewichtsreduktion sowie ängstlichem und zwanghaftem Verhalten. In dieser Übersichtsarbeit fassen wir mögliche Mechanismen der Interaktion zwischen dem Darmmikrobiom und dem Wirt zusammen und stellen erste Befunde zum Mikrobiom bei AN vor. Forschung zu Ernährungsinterventionen zum Beispiel mit Prä- und Probiotika oder Nahrungssupplementen wie Omega-3 Fettsäuren, die darauf abzielen, das Darmmikrobiom positiv zu beeinflussen, könnte zu zusätzlichen Behandlungsmöglichkeiten in der Therapie von Patient_innen mit AN führen.


The Gut Microbiome and Its Clinical Implications in Anorexia Nervosa

Abstract. The diverse interactions of the gut microbiome with the metabolism, the immune system, and the brain of the host are increasingly becoming to the forefront of relevant research. Studies suggest a connection between an altered intestinal microbiome and somatic diseases, such as colitis ulcerosa, Crohn’s disease, and diabetes, as well as mental illnesses such as anxiety and depression. Patients with anorexia nervosa (AN) also show significant changes in their gut microbiome which seem to be associated, among other things, with a different energy uptake from food, immunological and inflammatory processes, genetic predisposition, hormonal changes, and possibly increased intestinal permeability. In rats, stool transplantation from patients with AN resulted in decreased appetite and weight as well as anxious and compulsive behavior. In this review, we summarize the possible mechanisms of interaction between the microbiome and the host, and present initial findings on the microbiome in AN. Research on nutritional interventions, for example, with prebiotics and probiotics or nutritional supplements such as omega-3 fatty acids, which aim to positively influence the intestinal microbiome, could lead to additional treatment options in the therapy of patients with AN.

Literatur

  • Adeyeye, T. E., Yeung, E. H., McLain, A. C., Lin, S., Lawrence, D. A. & Bell, E. M. (2019). Wheeze and Food Allergies in Children Born via Cesarean Delivery: The Upstate KIDS Study. American journal of epidemiology, 188, 355–362. First citation in articleCrossref MedlineGoogle Scholar

  • Alam, R., Abdolmaleky, H. M. & Zhou, J. R. (2017). Microbiome, inflammation, epigenetic alterations, and mental diseases. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics, 174, 651–660. First citation in articleCrossref MedlineGoogle Scholar

  • Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor, G. B. & Tarkowska, A. et al. (2019). A new genomic blueprint of the human gut microbiota. Nature, 568, 499–504. First citation in articleCrossref MedlineGoogle Scholar

  • Ananthakrishnan, A. N. (2015). Epidemiology and risk factors for IBD. Nature reviews. Gastroenterology & hepatology, 12, 205–217. First citation in articleGoogle Scholar

  • Arcelus, J., Mitchell, A. J., Wales, J. & Nielsen, S. (2011). Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Archives of general psychiatry, 68, 724–731. First citation in articleCrossref MedlineGoogle Scholar

  • Bagga, D. & Reichert, J. L. (2018). Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes, 9, 486–496. First citation in articleMedlineGoogle Scholar

  • Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J. & Jury, J. et al. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141, 599–609, 609.e591–593. First citation in articleCrossref MedlineGoogle Scholar

  • Borgo, F., Riva, A., Benetti, A., Casiraghi, M. C., Bertelli, S. & Garbossa, S. et al. (2017). Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS One, 12, e0179739. First citation in articleCrossref MedlineGoogle Scholar

  • Bourassa, M. W., Alim, I., Bultman, S. J. & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience letters, 625, 56–63. First citation in articleCrossref MedlineGoogle Scholar

  • Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M. & Dinan, T. G. et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050–16055. First citation in articleCrossref MedlineGoogle Scholar

  • Bulik, C. M., Slof-Op’t Landt, M. C., van Furth, E. F. & Sullivan, P. F. (2007). The genetics of anorexia nervosa. Annual review of nutrition, 27, 263–275. First citation in articleCrossref MedlineGoogle Scholar

  • Chu, S., Zhang, Y., Jiang, Y., Sun, W., Zhu, Q. & Liu, S. et al. (2018). Cesarean section and risks of overweight and obesity in school-aged children: a population-based study. QJM: monthly journal of the Association of Physicians, 111, 859–865. First citation in articleCrossref MedlineGoogle Scholar

  • Costantini, L. & Molinari, R. (2017). Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 18, 2645. First citation in articleCrossrefGoogle Scholar

  • Cotillard, A., Kennedy, S. P., Kong, L. C., Prifti, E., Pons, N. & Le Chatelier, E. et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588. First citation in articleCrossref MedlineGoogle Scholar

  • Dai, C., Zheng, C. Q., Meng, F. J., Zhou, Z., Sang, L. X. & Jiang, M., (2013). VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-kappaB pathway in rat model of DSS-induced colitis. Molecular and cellular biochemistry, 374, 1–11. First citation in articleCrossref MedlineGoogle Scholar

  • Dalton, B., Bartholdy, S., Robinson, L., Solmi, M., Ibrahim, M. A. A. & Breen, G. et al. (2018). A meta-analysis of cytokine concentrations in eating disorders. Journal of psychiatric research, 103, 252–264. First citation in articleCrossref MedlineGoogle Scholar

  • David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E. & Wolfe, B. E. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563. First citation in articleCrossref MedlineGoogle Scholar

  • de Clercq, N. C., Frissen, M. N., Davids, M., Groen, A. K. & Nieuwdorp, M. (2019). Weight Gain after Fecal Microbiota Transplantation in a Patient with Recurrent Underweight following Clinical Recovery from Anorexia Nervosa. Psychotherapy and psychosomatics, 88, 58–60. First citation in articleCrossref MedlineGoogle Scholar

  • Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M. & Vieira-Silva, S. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 25, 1096–1103. First citation in articleCrossref MedlineGoogle Scholar

  • Ferreiro, A., Dantas, G. & Ciorba, M. A. (2019). Insights into How Probiotics Colonize the Healthy Human Gut. Gastroenterology, 156, 820–822. First citation in articleCrossref MedlineGoogle Scholar

  • Fetissov, s. o. (2017). Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature reviews. Endocrinology, 13, 11–25. First citation in articleMedlineGoogle Scholar

  • Ghaly, S., Kaakoush, N. O., Lloyd, F., McGonigle, T. & Mok, D. (2018). High Dose Vitamin D supplementation alters faecal microbiome and predisposes mice to more severe colitis. Scientific Reports, 8, 11511. First citation in articleCrossref MedlineGoogle Scholar

  • Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O. & Blekhman, R. et al. (2014). Human genetics shape the gut microbiome. Cell, 159, 789–799. First citation in articleCrossref MedlineGoogle Scholar

  • Groot, H. E., van de Vegte, Y. J., Verweij, N., Lipsic, E., Karper, J. C. & van der Harst, P. (2020). Human genetic determinants of the gut microbiome and their associations with health and disease: a phenome-wide association study. Scientific reports, 10, 14771. First citation in articleCrossref MedlineGoogle Scholar

  • Hall, A. B., Tolonen, A. C. & Xavier, R. J. (2017). Human genetic variation and the gut microbiome in disease. Nature reviews. Genetics, 18, 690–699. First citation in articleMedlineGoogle Scholar

  • Hanachi, M., Manichanh, C., Schoenenberger, A., Pascal, V., Levenez, F. & Cournede, N. et al. (2018). Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: An explicative factor of functional intestinal disorders? Clinical nutrition, 38 (5), 2304–2310. First citation in articleCrossref MedlineGoogle Scholar

  • Hata, T., Miyata, N., Takakura, S., Yoshihara, K., Asano, Y. & Kimura-Todani, T. et al. (2019). The Gut Microbiome Derived From Anorexia Nervosa Patients Impairs Weight Gain and Behavioral Performance in Female Mice. Endocrinology, 160, 2441–2452. First citation in articleCrossref MedlineGoogle Scholar

  • Hedman, A., Breithaupt, L. & Hubel, C. (2019). Bidirectional relationship between eating disorders and autoimmune diseases. Journal of Child Psychology and Psychiatry, 60, 803–812. First citation in articleCrossref MedlineGoogle Scholar

  • Herpertz-Dahlmann, B. (2015). Adolescent eating disorders: update on definitions, symptomatology, epidemiology, and comorbidity. Child and adolescent psychiatric clinics of North America, 24, 177–196. First citation in articleCrossref MedlineGoogle Scholar

  • Herpertz-Dahlmann, B., Seitz, J. & Baines, J. (2017). Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa. Eur Child Adolesc Psychiatry, 26, 1031-1041. DOI: 10.1007/s00787​-017​-0945-7 First citation in articleCrossref MedlineGoogle Scholar

  • Hullar, M. A. & Fu, B. C. (2014). Diet, the gut microbiome, and epigenetics. Cancer journal, 20, 170–175. First citation in articleCrossref MedlineGoogle Scholar

  • Illiano, P., Brambilla, R. & Parolini, C. (2020). The mutual interplay of gut microbiota, diet and human disease. FEBS Journal, 287, 833–855. First citation in articleCrossrefGoogle Scholar

  • Jacobsen, C. N., Rosenfeldt, N. V., Hayford, A. E., Møller, P. L., Michaelsen, K. F. & Paerregaard, A. et al. (1999). Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Applied and environmental microbiology, 65, 4949–4956. First citation in articleCrossref MedlineGoogle Scholar

  • Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L. & Fasano, A. et al. (2017). Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 5, 10. First citation in articleCrossref MedlineGoogle Scholar

  • Kelly, J. R., Kennedy, P. J., Cryan, J. F., Dinan, T. G., Clarke, G. & Hyland, N. P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in cellular neuroscience, 9, 392. First citation in articleCrossref MedlineGoogle Scholar

  • Kleiman, S. C., Glenny, E. M., Bulik-Sullivan, E. C., Huh, E. Y., Tsilimigras, M. C. B. & Fodor, A. A. et al. (2017). Daily Changes in Composition and Diversity of the Intestinal Microbiota in Patients with Anorexia Nervosa: A Series of Three Cases. European eating disorders review: the journal of the Eating Disorders Association, 25, 423–427. First citation in articleCrossref MedlineGoogle Scholar

  • Kleiman, S. C., Watson, H. J., Bulik-Sullivan, E. C., Huh, E. Y., Tarantino, L. M. & Bulik, C. M. et al. (2015). The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and Eating Disorder Psychopathology. Psychosomatic medicine, 77, 969–981. First citation in articleCrossref MedlineGoogle Scholar

  • Kurilshikov, A., Wijmenga, C., Fu, J. & Zhernakova, A. (2017). Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends in immunology, 38, 633–647. First citation in articleCrossref MedlineGoogle Scholar

  • Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. (2017). Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ, 5, e2836. First citation in articleCrossref MedlineGoogle Scholar

  • Lu, J., Synowiec, S., Lu, L., Yu, Y., Bretherick, T. & Takada, S. et al. (2018). Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PloS one, 13, e0201829. First citation in articleCrossref MedlineGoogle Scholar

  • Mack, I., Cuntz, U., Gramer, C., Niedermaier, S., Pohl, C. & Schwiertz, A. et al. (2016). Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Scientific reports, 6, 26752. First citation in articleCrossref MedlineGoogle Scholar

  • Marcos-Zambrano, L. J., Karaduzovic-Hadziabdic, K., Loncar Turukalo, T., Przymus, P., Trajkovik, V. & Aasmets, O. et al. (2021). Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Frontiers in microbiology, 12, 634511. First citation in articleCrossref MedlineGoogle Scholar

  • Marques, T. M., Wall, R., Ross, R. P., Fitzgerald, G. F., Ryan, C. A. & Stanton, C. (2010). Programming infant gut microbiota: influence of dietary and environmental factors. Current opinion in biotechnology, 21, 149–156. First citation in articleCrossref MedlineGoogle Scholar

  • Mohle, L., Mattei, D., Heimesaat, M. M., Bereswill, S., Fischer, A. & Alutis, M. et al. (2016). Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell reports, 15, 1945–1956. First citation in articleCrossref MedlineGoogle Scholar

  • Morkl, S., Lackner, S., Muller, W., Gorkiewicz, G., Kashofer, K. & Oberascher, A. et al. (2017). Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. The International journal of eating disorders, 50, 1421–1431. First citation in articleCrossref MedlineGoogle Scholar

  • Mudter, J. & Neurath, M. F. (2007). Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflammatory bowel diseases, 13, 1016–1023. First citation in articleCrossref MedlineGoogle Scholar

  • Muhammad, J. S. & Eladl, M. A. (2019). Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens, 8, 23. First citation in articleCrossrefGoogle Scholar

  • Niwa, T. & Ushijima, T. (2010). Induction of epigenetic alterations by chronic inflammation and its significance on carcinogenesis. Advances in genetics, 71, 41–56. First citation in articleCrossref MedlineGoogle Scholar

  • Pirbaglou, M., Katz, J., de Souza, R. J., Stearns, J. C., Motamed, M. & Ritvo, P. (2016). Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutrition research, 36, 889–898. First citation in articleCrossref MedlineGoogle Scholar

  • Prochazkova, P., Roubalova, R., Dvorak, J., Tlaskalova-Hogenova, H., Cermakova, M. & Tomasova, P. et al. (2019). Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms, 7, 338. First citation in articleCrossref MedlineGoogle Scholar

  • Queipo-Ortuno, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M. & Cardona, F. et al. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one, 8, e65465. First citation in articleCrossref MedlineGoogle Scholar

  • Raevuori, A., Haukka, J., Vaarala, O., Suvisaari, J. M., Gissler, M. & Grainger, M. et al. (2014). The increased risk for autoimmune diseases in patients with eating disorders. PloS one, 9, e104845. First citation in articleCrossref MedlineGoogle Scholar

  • Rancich, M. & Roman, C. (2019). Updated guidelines for diagnosing and managing Clostridium difficile. Official Journal of the American Academy of Physician Assistants, 32, 48–50. First citation in articleCrossref MedlineGoogle Scholar

  • Raymond, N. C., Dysken, M., Bettin, K., Eckert, E. D., Crow, S. J. & Markus, K. et al. (2000). Cytokine production in patients with anorexia nervosa, bulimia nervosa, and obesity. The International journal of eating disorders, 28, 293–302. First citation in articleCrossref MedlineGoogle Scholar

  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E. & Kau, A. L. et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 1241214. First citation in articleCrossref MedlineGoogle Scholar

  • Riscuta, G., Xi, D., Pierre-Victor, D., Starke-Reed, P., Khalsa, J. & Duffy, L. (2018). Diet, Microbiome, and Epigenetics in the Era of Precision Medicine. Methods in molecular biology, 1856, 141–156. First citation in articleCrossref MedlineGoogle Scholar

  • Rodríguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I. & Juge, N. et al. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial ecology in health and disease, 26, 26050. First citation in articleCrossref MedlineGoogle Scholar

  • Ruusunen, A., Rocks, T., Jacka, F. & Loughman, A. (2019). The gut microbiome in anorexia nervosa: relevance for nutritional rehabilitation. Psychopharmacology, 236, 1545–1558. First citation in articleCrossref MedlineGoogle Scholar

  • Schulz, N., Belheouane, M., Dahmen, B., Ruan, V. A., Specht, H. E. & Dempfle, A. et al. (2020). Gut microbiota alteration in adolescent anorexia nervosa does not normalize with short-term weight restoration. International Journal of eating disorders, 54, 969–980. First citation in articleCrossref MedlineGoogle Scholar

  • Seitz, J., Trinh, S. & Herpertz-Dahlmann, B. (2019). The Microbiome and Eating Disorders. The Psychiatric clinics of North America, 42, 93–103. First citation in articleCrossref MedlineGoogle Scholar

  • Sender, R. & Fuchs, S. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology, 14, e1002533. First citation in articleCrossref MedlineGoogle Scholar

  • Severance, Y. (2020). Tracking a dysregulated gut-brain axis with biomarkers of the microbiome. Biomarkers in Neuropsychiatry, 2, 10009. First citation in articleCrossrefGoogle Scholar

  • Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients, 5, 1417–1435. First citation in articleCrossref MedlineGoogle Scholar

  • Smith, M. I., Yatsunenko, T., Manary, M. J., Trehan, I., Mkakosya, R. & Cheng, J. et al. (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339, 548–554. First citation in articleCrossref MedlineGoogle Scholar

  • Speranza, E., Cioffi, I., Santarpia, L., Del Piano, C., De Caprio, C. & Naccarato, M. et al. (2018). Fecal Short Chain Fatty Acids and Dietary Intake in Italian Women With Restrictive Anorexia Nervosa: A Pilot Study. Frontiers in nutrition, 5, 119. First citation in articleCrossref MedlineGoogle Scholar

  • Tengeler, A. C., Dam, S. A., Wiesmann, M., Naaijen, J., van Bodegom, M. & Belzer, C. et al. (2020). Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome, 8, 44. First citation in articleCrossref MedlineGoogle Scholar

  • Tennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y. N. & Akkermann, K. et al. (2014). Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide alpha-MSH, at the origin of eating disorders. Translational psychiatry, 4, e458. First citation in articleCrossref MedlineGoogle Scholar

  • Tremaroli, V., Karlsson, F., Werling, M., Stahlman, M., Kovatcheva-Datchary, P. & Olbers, T. et al. (2015). Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell metabolism, 22, 228–238. First citation in articleCrossref MedlineGoogle Scholar

  • Trinh, S., Kogel, V., Voelz, C., Schlösser, A., Schwenzer, C. & Kabbert, J. et al. (2021). Gut microbiota and brain alterations in a translational anorexia nervosa rat model. Journal of psychiatric research, 133, 156–165. First citation in articleCrossref MedlineGoogle Scholar

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031. First citation in articleCrossref MedlineGoogle Scholar

  • van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G. & de Vos, W. M. et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. The New England journal of medicine, 368, 407–415. First citation in articleCrossref MedlineGoogle Scholar

  • van Opstal, E. J. & Bordenstein, S. R. (2015). MICROBIOME. Rethinking heritability of the microbiome. Science, 349, 1172–1173. First citation in articleCrossref MedlineGoogle Scholar

  • Vanuytsel, T., van Wanrooy, S., Vanheel, H., Vanormelingen, C., Verschueren, S. & Houben, E. et al. (2014). Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut, 63, 1293–1299. First citation in articleCrossref MedlineGoogle Scholar

  • Wade, K. H. & Hall, L. J. (2019). Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open Research, 4, 199. First citation in articleCrossref MedlineGoogle Scholar

  • Zhang, Z. J., Qu, H. L., Zhao, N., Wang, J., Wang, X. Y. & Hai, R. et al. (2021). Assessment of Causal Direction Between Gut Microbiota and Inflammatory Bowel Disease: A Mendelian Randomization Analysis. Frontiers in genetics, 12, 631061. First citation in articleCrossref MedlineGoogle Scholar