Skip to main content
Übersichtsarbeit

Möglichkeiten und Grenzen von Neurofeedback

Published Online:https://doi.org/10.1024/2235-0977/a000293

Zusammenfassung. In diesem Artikel möchten wir einen kurzen Überblick über die Möglichkeiten und Grenzen von Neurofeedback geben. Neurofeedback ist eine Methode, in der man lernen kann über direkte Rückmeldung der eigenen Gehirnaktivierung diese willentlich zu modulieren. Dies kann zu kognitiven, motorischen und / oder affektiven Verbesserungen führen. Neurofeedback wird bereits in der Praxis zur Behandlung verschiedenster klinischer Symptome eingesetzt. Doch obwohl Neurofeedback als sehr vielversprechende Methode zur Veränderung neuronaler Korrelate des Erlebens und Verhaltens erscheint, gibt es doch einige Grenzen und Einschränkungen. Eines der größten Probleme ist die zum Teil mangelhafte und unstandardisierte Evaluation der Effekte von Neurofeedback. Daher ist es noch schwer, spezifische von unspezifischen Effekten, wie etwa Erwartungs- und Placebo-Effekten, von Neurofeedback zu differenzieren. Aktuell sind verschiedene Forschergruppen, die sich mit dem Thema Neurofeedback befassen, bemüht, geeignete Standards für die Evaluation und Berichterstattung von Neurofeedbackeffekten zu erstellen. Dies könnte zukünftige Studien aber auch die praktische Anwendung und Ausbildung von Neurofeedback-Therapeut_innen bzw. -Trainer_innen positiv beeinflussen und somit den Stellenwert von Neurofeedback-Training im klinischen Kontext steigern.


Possibilities and limitations of neurofeedback

Abstract. In this review, we will give a brief overview of the possibilities and limitations of neurofeedback. Using neurofeedback, people can learn how to modulate one’s own brain activity in a desired direction. Successful neurofeedback control can lead to cognitive, motor, and affective improvements. Neurofeedback is already being used to treat a variety of clinical symptoms. Although neurofeedback seems to be a promising method to modulate neuronal correlates of behavior, it is also associated with some limitations. A major drawback is the lack of empirically sound evaluation studies. Therefore, it is hard to distinguish between specific and unspecific effects (e. g. placebo effects) of neurofeedback training. Recently, different research groups try to define standards for reporting and performing neurofeedback studies to increase the significance and impact of future studies. A more sophisticated evaluation of neurofeedback effects might also improve the training of neurofeedback therapists / trainers and its application in clinical contexts.

Literatur

  • Ali, S. S., Lifshitz, M. & Raz, A. (2014). Empirical neuroenchantment: from reading minds to thinking critically. Frontiers in Human Neuroscience, 8, 357. First citation in articleCrossrefGoogle Scholar

  • Allison, B. Z. & Neuper, C. (2010). Could Anyone Use a BCI? In D. S. TanA. Nijholt (Hrsg.), Brain-Computer Interfaces. Human-Computer Interaction Series (S. 35 – 54). London: Springer-Verlag. First citation in articleGoogle Scholar

  • Arns, M., Ridder, S. de, Strehl, U., Breteler, M. & Coenen, T. (2009). Efficacy of Neurofeedback treatment in ADHD: The effects on Inattention, Impulsivity and Hyperactivity: A meta-analysis. Clinical EEG and Neuroscience, 40(3), 180 – 189. First citation in articleCrossrefGoogle Scholar

  • Arns, M. & Sterman, M. B. (2019). Neurofeedback. How it all started (2nd edition). Nijmegen: Brainclinics Insights. First citation in articleGoogle Scholar

  • Birbaumer, N. & Schmidt, R. (2006). Biologische Psychologie (6th Edition). Heidelberg: Springer. First citation in articleGoogle Scholar

  • Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K.-R. et al. (2010). Neurophysiological predictor of SMR-based BCI performance. NeuroImage, 51(4), 1303 – 1309. First citation in articleCrossrefGoogle Scholar

  • Cho, H.-Y., Kim, K., Lee, B. & Jung, J. (2015). The effect of neurofeedback on a brain wave and visual perception in stroke: a randomized control trial. Journal of physical therapy science, 27(3), 673 – 676. First citation in articleCrossrefGoogle Scholar

  • Cortese, S., Ferrin, M., Brandeis, D., Holtmann, M., Aggensteiner, P., Daley, D. et al. (2016). Neurofeedback for Attention-Deficit / Hyperactivity Disorder. Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized Controlled Trials. Journal of the American Academy of Child and Adolescent Psychiatry, 55(6), 444 – 455. First citation in articleCrossrefGoogle Scholar

  • Davelaar, E. J. (2018). Mechanisms of Neurofeedback. A Computation-theoretic Approach. Neuroscience, 378, 175 – 188. First citation in articleCrossrefGoogle Scholar

  • Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Brain research, 3(2), 87 – 93. First citation in articleGoogle Scholar

  • Doppelmayr, M., Nosko, H., Pecherstorfer, T. & Fink, A. (2007). An Attempt to Increase Cognitive Performance After Stroke With Neurofeedback. Biofeedback and Self-Regulation, 3, 126 – 130. Verfügbar unter http://connection.ebscohost.com/c/articles/30051035/attempt-increase-cognitive-performance-after-stroke-neurofeedback First citation in articleGoogle Scholar

  • Egner, T. & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport, 12(18), 4155 – 4159. First citation in articleCrossrefGoogle Scholar

  • Enriquez-Geppert, S., Huster, R. J. & Herrmann, C. S. (2013). Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback. International Journal of Psychophysiology, 88(1), 1 – 16. First citation in articleCrossrefGoogle Scholar

  • Enriquez-Geppert, S., Huster, R. J. & Herrmann, C. S. (2017). EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Frontiers in Human Neuroscience, 11, 51. First citation in articleCrossrefGoogle Scholar

  • Enriquez-Geppert, S., Smit, D., Pimenta, M. G. & Arns, M. (2019). Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. Current psychiatry reports, 21(6), 46. First citation in articleCrossrefGoogle Scholar

  • Escolano, C., Olivan, B., Lopez-del-Hoyo, Y., Garcia-Campayo, J. & Minguez, J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. Conference proceedings, 2012, 4643 – 4647. First citation in articleGoogle Scholar

  • Faralli, A., Bigoni, M., Mauro, A., Rossi, F. & Carulli, D. (2013). Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity. https://doi.org/10.1155/2013/854597 First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. II: Creativity, the performing arts and ecological validity. Neuroscience & Biobehavioral Reviews, 44, 142 – 158. First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J. H. (2014a). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience and biobehavioral reviews, 44, 124 – 141. First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J. H. (2014b). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience and biobehavioral reviews, 44, 159 – 182. First citation in articleCrossrefGoogle Scholar

  • Halder, S., Varkuti, B., Bogdan, M., Kübler, A., Rosenstiel, W., Sitaram, R. et al. (2013). Prediction of brain-computer interface aptitude from individual brain structure. Frontiers in Human Neuroscience, 7, 1 – 9. First citation in articleCrossrefGoogle Scholar

  • Herrmann, C. S., Strüber, D., Helfrich, R. F. & Engel, A. K. (2016). EEG oscillations: From correlation to causality. International journal of psychophysiology, 103, 12 – 21. First citation in articleCrossrefGoogle Scholar

  • Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W. et al. (2008). Instrumental Conditioning of Human Sensorimotor Rhythm (12 – 15 Hz) and Its Impact on Sleep as Well as Declarative Learning. Sleep, 31(10), 1401 – 1408. First citation in articleGoogle Scholar

  • Kamiya, J. (1969). Operant control of the EEG alpha rhythm and some of its reported effects on consciousness. Altered states of consciousness. New York: Wiley, 489 – 501. First citation in articleGoogle Scholar

  • Kleih, S.C., Nijboer, F., Halder, S. & Kübler, A. (2010). Motivation modulates the P300 amplitude during brain–computer interface use. Clinical Neurophysiology, 121(7), 1023 – 1031. First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research, 29(2 – 3), 169 – 195. First citation in articleGoogle Scholar

  • Klimesch, W., Sauseng, P. & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63 – 88. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Bauernfeind, G., Woller, C., Sampl, M., Grieshofer, P., Neuper, C. et al. (2015). Hemodynamic Signal Changes Accompanying Execution and Imagery of Swallowing in Patients with Dysphagia: A Multiple Single-Case Near-Infrared Spectroscopy Study. Frontiers in Neurology, 6, 1 – 10. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Pinter, D., Enzinger, C., Damulina, A., Duckstein, H., Fuchs, S. et al. (2019). Self-regulation of brain activity and its effect on cognitive function in patients with multiple sclerosis – First insights from an interventional study using neurofeedback. Clinical Neurophysiology, 130(11), 2124 – 2131. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C. et al. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal of neuroengineering and rehabilitation, 12, 1 – 13. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Witte, M., Grinschgl, S., Neuper, C. & Wood, G. (2018). Placebo hampers ability to self-regulate brain activity. A double-blind sham-controlled neurofeedback study. NeuroImage, 181, 797 – 806. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Witte, M., Neuper, C. & Wood, G. (2017). Specific or nonspecific? Evaluation of band, baseline, and cognitive specificity of sensorimotor rhythm- and gamma-based neurofeedback. International Organization of Psychophysiology, 120, 1 – 13. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Witte, M., Ninaus, M., Neuper, C. & Wood, G. (2013). Learning to modulate one’s own brain activity: the effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 1 – 12. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Witte, M., Stangl, M., Valjamae, A., Neuper, C. & Wood, G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126(1), 82 – 95. First citation in articleCrossrefGoogle Scholar

  • Koralek, A. C., Jin, X., Long, J. D. 2., Costa, R. M. & Carmena, J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 483 (7389), 331 – 335. First citation in articleCrossrefGoogle Scholar

  • Kropotov, J. D. (2009). Quantitative EEG, event-related potentials and neurotherapy (1. Aufl.). Amsterdam: Elsevier / Academic. First citation in articleGoogle Scholar

  • Micoulaud-Franchi, J.-A., Geoffroy, P. A., Fond, G., Lopez, R., Bioulac, S. & Philip, P. (2014). EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Frontiers in human neuroscience, 8, 906. First citation in articleCrossrefGoogle Scholar

  • Mihara, M. (2011). Neurorehabilitative intervention with neurofeedback system using functional near-infrared spectroscopy. Rinsho Shinkeigaku, 51(11), 924 – 926. First citation in articleCrossrefGoogle Scholar

  • Mihara, M., Miyai, I., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T. et al. (2012). Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation. PLoS ONE, 7(3), e32234. First citation in articleCrossrefGoogle Scholar

  • Monge-Pereira, E., Ibañez-Pereda, J., Alguacil-Diego, I. M., Serrano, J. I., Spottorno-Rubio, M. P. & Molina-Rueda, F. (2017). Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke: A Systematic Review. PM & R: the journal of injury, function, and rehabilitation, 9(9), 918 – 932. First citation in articleCrossrefGoogle Scholar

  • Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P.-I. et al. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83 – 87. First citation in articleCrossrefGoogle Scholar

  • Ninaus, M., Kober, S.E., Witte, M., Koschutnig, K., Neuper, C. & Wood, G. (2015). Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biological Psychology, 110, 126 – 133. First citation in articleCrossrefGoogle Scholar

  • Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676 – 686. First citation in articleCrossrefGoogle Scholar

  • Nuwer, M. R., Hovda, D. A., Schrader, L. M. & Vespa, P. M. (2005). Routine and quantitative EEG in mild traumatic brain injury. Clinical Neurophysiology, 116(9), 2001 – 2025. First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G. & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2 – 3), 65 – 68. First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G. & Neuper, C. (2006). Future prospects of ERD / ERS in the context of brain–computer interface (BCI) developments. Progress in brain research, 159, 433 – 437. First citation in articleCrossrefGoogle Scholar

  • Renton, T., Tibbles, A. & Topolovec-Vranic, J. (2017). Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review. PloS one, 12(5), e0177290. First citation in articleCrossrefGoogle Scholar

  • Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K., Wood, G., Whitfield-Gabrieli, S. et al. (2019). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). doi:10.31234/osf.io/nyx84 First citation in articleGoogle Scholar

  • Schabus, M., Griessenberger, H., Gnjezda, M.-T., Heib, D. P. J., Wislowska, M. & Hoedlmoser, K. (2017). Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain: a journal of neurology, 140(4), 1041 – 1052. First citation in articleCrossrefGoogle Scholar

  • Schafer, R. J. & Moore, T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science, 332 (6037), 1568 – 1571. First citation in articleCrossrefGoogle Scholar

  • Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A. et al. (2011). Brain-computer interface in stroke: a review of progress. Clinical EEG and neuroscience, 42(4), 245 – 252. First citation in articleCrossrefGoogle Scholar

  • Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J. et al. (2017). Closed-loop brain training: the science of neurofeedback. Nature reviews. Neuroscience, 18(2), 86 – 100. First citation in articleGoogle Scholar

  • Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback and self-regulation, 21(1), 3 – 33. Verfügbar unter http://www.scopus.com/inward/record.url?eid=2-s2.0-0030090203&partnerID=40&md5=76061b95d2c4e5ae6dac64050188a802 First citation in articleGoogle Scholar

  • Sterman, M. B. (2000). Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clinical EEG Electroencephalography, 31(1), 45 – 55. Verfügbar unter http://www.scopus.com/inward/record.url?eid=2-s2.0-0033988005&partnerID=40&md5=dcc19435c928286d12014c7089ba2d03 First citation in articleGoogle Scholar

  • Strehl, U. (Hrsg.). (2013). Neurofeedback. Theoretische Grundlagen – Praktisches Vorgehen – Wissenschaftliche Evidenz. Stuttgart: Kohlhammer. First citation in articleGoogle Scholar

  • Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 207. First citation in articleCrossrefGoogle Scholar

  • Strehl, U., Aggensteiner, P., Wachtlin, D., Brandeis, D., Albrecht, B., Arana, M. et al. (2017). Neurofeedback of Slow Cortical Potentials in Children with Attention-Deficit / Hyperactivity Disorder: A Multicenter Randomized Trial Controlling for Unspecific Effects. Frontiers in human neuroscience, 11, 135. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. (2005). Aufmerksamkeitsstörungen (Fortschritte der Neuropsychologie, Bd. 4). Göttingen: Hogrefe. First citation in articleCrossrefGoogle Scholar

  • Sturm, W., Fimm, B., Cantagallo, A., Cremel, N., North, P., Passadori, A. et al. (2003). Specific Computerized Attention Training in Stroke and Traumatic Brain-Injured Patients. Zeitschrift für Neuropsychologie, 14(4), 283 – 292. First citation in articleLinkGoogle Scholar

  • Sturm, W., Willmes, K., Orgass, B. & Hartje, W. (1997). Do Specific Attention Deficits Need Specific Training? Neuropsychological rehabilitation, 7(2), 81 – 103. First citation in articleCrossrefGoogle Scholar

  • Tan, G., Thornby, J., Hammond, D. C., Strehl, U., Canady, B., Arnemann, K. et al. (2009). Meta-analysis of EEG biofeedback in treating epilepsy. Clinical EEG and neuroscience, 40(3), 173 – 179. First citation in articleCrossrefGoogle Scholar

  • Thibault, R. T., Lifshitz, M. & Raz, A. (2016). The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex, 74, 247 – 261. First citation in articleCrossrefGoogle Scholar

  • Thibault, R. T., Lifshitz, M. & Raz, A. (2017). Neurofeedback or neuroplacebo? Brain: a journal of neurology, 140(4), 862 – 864. First citation in articleCrossrefGoogle Scholar

  • Thibault, R. T., Lifshitz, M. & Raz, A. (2018). The climate of neurofeedback: scientific rigour and the perils of ideology. Brain: a journal of neurology, 141(2), e11. First citation in articleCrossrefGoogle Scholar

  • Thornton, K. E. & Carmody, D. P. (2009). Traumatic Brain Injury Rehabilitation: QEEG Biofeedback Treatment Protocols. Applied Psychophysiology and Biofeedback, 34(1), 59 – 68. First citation in articleCrossrefGoogle Scholar

  • Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M. A., Strehl, U. & K Loo, S. (2019). Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. European child & adolescent psychiatry, 28(3), 293 – 305. First citation in articleCrossrefGoogle Scholar

  • Witte, M., Kober, S. E., Ninaus, M., Neuper, C. & Wood, G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience, 7(478), 1 – 8. First citation in articleCrossrefGoogle Scholar

  • Wolpaw, J. R. (Ed.). (2012). Brain-computer interfaces. Principles and practice. Oxford: Oxford Univ. Press. First citation in articleCrossrefGoogle Scholar

  • Wood, G. & Kober, S. E. (2018). EEG Neurofeedback is under strong control of psychosocial factors. Applied Psychophysiology and Biofeedback, 1 – 8. First citation in articleGoogle Scholar

  • Wood, G., Kober, S. E., Witte, M. & Neuper, C. (2014). On the need to better specify the concept of “control” in brain-computer-interfaces / neurofeedback research. Frontiers in Systems Neuroscience, 8(171), 1 – 4. First citation in articleCrossrefGoogle Scholar

  • Zoefel, B., Huster, R. J. & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427 – 1431. First citation in articleCrossrefGoogle Scholar