Skip to main content
Published Online:https://doi.org/10.1026//0033-3042.53.2.49

Zusammenfassung. Anschauliches Denken ist ein vitaler Bestandteil der menschlichen kognitiven Grundausstattung. Im psychologischen Labor blieben die Befunde zum Einfluß der Vorstellbarkeit des Materials auf die Leistung in Denkaufgaben allerdings inkonsistent. Ausgangspunkt der vorliegenden Arbeit ist die Annahme, daß die Uneinheitlichkeit der Ergebnisse zum anschaulichen Denken auf eine Konfundierung visuell-bildhafter und räumlicher Prozesse im Arbeitsgedächtnis zurückgeht. Wir geben einen Überblick über die neuere Forschung einschließlich eigener Ergebnisse, wobei wir uns auf deduktive Schlußfolgerungen konzentrieren. Aufgaben unterschiedlicher Modalität, die das räumliche Arbeitsgedächtnis zusätzlich belasten, interferieren demnach mit anschaulichem Denken, nicht aber rein visuelle Aufgaben. Zudem begünstigt einfache räumliche Vorstellbarkeit die Leistung beim Schlußfolgern, während rein visuelles Vorstellen sogar beeinträchtigend wirken kann. In Experimenten mit Hilfe funktioneller Kernspintomographie (fMRT) findet sich außerdem erhöhte Aktivierung in Hirnregionen, die mit räumlichem Arbeitsgedächtnis in Verbindung gebracht werden, nicht aber in Arealen des visuellen Arbeitsgedächtnisses. Anscheinend hat anschauliches Denken, im Gegensatz zur landläufigen Meinung, mit räumlichen und nicht mit visuellen Repräsentationen und Prozessen im Arbeitsgedächtnis zu tun.


Imaginary reasoning and working memory: cognitive and cortical processes

Abstract. Imaginary thinking is a vital, basic element of human cognition. However, in the psychological laboratory, the findings regarding the effect of imageability on reasoning remain inconsistent. The starting point of the following work is the assumption that the inconsistencies arise from a confounding of visual and spatial processes in working memory. We give an overview of recent research (mainly on deductive reasoning), including our own results: secondary tasks of different modalities which preoccupy spatial working memory interfere with imaginary reasoning, whereas purely visual secondary tasks have no effect. Moreover, reasoning with materials that are easy to envisage spatially promote reasoning performance, while purely visual imageability can even impair reasoning. Furthermore, in studies using functional magnetic resonance imaging (fMRI), increased activation was found in brain regions that are associated with spatial working memory, but not in visual working memory areas. Apparently, imaginary reasoning - contrary to popular belief - has to do with spatial rather than visual representations and processes in working memory.

Literatur

  • Andersen, R. A. , Snyder, L. H. , Bradley, D. C. , Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements.. Annual Review of Neuroscience, 20, 303– 330 CrossrefGoogle Scholar

  • Anderson, J. R. (1983). The architecture of cognition. . Cambridge, MA: Harvard University Press. Google Scholar

  • Antonietti, A. (1991). Why does mental visualization facilitate problem-solving?. In R. H. Logie & M. Denis (Eds.), Mental Images in Human Cognition (pp. 211-227). Amsterdam: Elsevier Science Publishers. Google Scholar

  • Baddeley, A. D. (1986). Working memory. . Oxford: Oxford University Press. Google Scholar

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory.. Trends in Cognitive Science, 11, 417– 423 CrossrefGoogle Scholar

  • Baddeley, A. D. , Hitch, G. (1974). Working memory.. In G. H. Bower (Eds.), The psychology of learning and motivation (Bd. 8, pp. 47-89). New York: Academic press. CrossrefGoogle Scholar

  • Baddeley, A. D. , Lieberman, K. (1980). Spatial working memory.. In R. S. Nickerson (Eds.), Attention and performance (Bd. 8, S. 521-539). Hillsdale, NJ: Lawrence Erlbaum Associates. Google Scholar

  • Baddeley, A. D. , Logie, R. H. (1992). Auditory imagery and working memory.. In D. Reisberg (Eds.), Auditory imagery (pp. 179-197). Hillsdale, NJ: Lawrence Erlbaum. Google Scholar

  • Block, N. (1981). Imagery. . Cambridge, MA: MIT Press. Google Scholar

  • Boltzmann, L. (1905). Über die Bedeutung von Theorien. Erwiderung auf die Abschiedworte von A. Tewes und H. Streintz bei der Berufung nach München, am 16. Juli 1890 in Graz gesprochen.. In L. Boltzmann (Hrsg.), Populäre Schriften. Leipzig: J. A. Barth. Google Scholar

  • Bryant, D. J. (1992). A spatial representation system in humans.. Psycholoquy, 3, 16– Google Scholar

  • Bühler, K. (1909). Zur Kritik der Denkexperimente.. Zeitschrift für Psychologie, 51, 108– 118 Google Scholar

  • Byrne, R. M. J. , Johnson-Laird, P. N. (1989). Spatial reasoning.. Journal of Memory and Language, 28, 564– 575 CrossrefGoogle Scholar

  • Carreiras, M. , Santamaría, C. (1997). Reasoning about relations: Spatial and nonspatial problems.. Thinking and Reasoning, 3, 191– 208 CrossrefGoogle Scholar

  • Clement, C. A. , Falmagne, R. J. (1986). Logical reasoning, world knowledge, and mental imagery: Interconnections in cognitive processes.. Memory & Cognition, 14, 299– 307 CrossrefGoogle Scholar

  • Craik, K. J. W. (1943). The Nature of Explanation (reprinted 1952).. Cambridge: Cambridge University Press. Google Scholar

  • D’Esposito, M. , Aguirre, G. K. , Zarahn, E. , Ballard, D. , Shin, R. K. , Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory.. Cognitive Brain Research, 7, 1– 13 CrossrefGoogle Scholar

  • D’Esposito, M. , Detre, J. A. , Aguirre, G. K. , Stallcup, M. , Alsop, D. C. , Tippet, L. J. , Farah, M. J. (1997). A functional MRI study of mental image generation.. Neuropsychologia, 35, 725– 730 CrossrefGoogle Scholar

  • DeSoto, L. B. , London, M. , Handel, M. S. (1965). Social reasoning and spatial paralogic.. Journal of Personality and Social Psychology, 2, 513– 521 CrossrefGoogle Scholar

  • De Vooght, G. , Vandierendonck, A. (1998). Spatial mental models in linear reasoning.. Kognitionswissenschaft, 1, 5– 10 CrossrefGoogle Scholar

  • Dutke, S. (1993). Mentale Modelle beim Erinnern sprachlich beschriebener Anordnungen: Zur Interaktion von Gedächtnisschemata und Textrepräsentation.. Zeitschrift für experimentelle und angewandte Psychologie, 40, 44– 71 Google Scholar

  • Ehrlich, K. , Johnson-Laird, P. N. (1982). Spatial descriptions and referential continuity.. Journal of Verbal Learning and Verbal Behavior, 21, 296– 306 CrossrefGoogle Scholar

  • Engelkamp, J. (1990). Das menschliche Gedächtnis. . Göttingen: Hogrefe. Google Scholar

  • Evans, J. St. B. T. , Brooks, P. G. (1981). Competing with reasoning: A test of the working memory hypothesis.. Current Psychological Research, 1, 139– 147 CrossrefGoogle Scholar

  • Evans, J. St. B. T. , Newstead, S. T. , Byrne, R. M. J. (1993). Human Reasoning. . Hove, UK: Laurence Erlbaum Associates. Google Scholar

  • Gilhooly, K. J. (1998). Working memory, strategies, and reasoning tasks.. In R. H. Logie & K. J. Gilhooly (Eds.), Working memory and thinking (pp. 7-22), Hove, UK: Psychology Press. CrossrefGoogle Scholar

  • Gilhooly, K. J. , Logie, R. H. , Wetherick, N. E. , Wynn, V. (1993). Working memory and strategies in syllogistic-reasoning tasks.. Memory & Cognition, 21, 115– 124 CrossrefGoogle Scholar

  • Gilhooly, K. J. , Logie, R. H. , Wynn, V. (1999). Syllogistic reasoning tasks, working memory, and skill.. European Journal of Cognitive Psychology, 11, 473– 498 CrossrefGoogle Scholar

  • Goel, V. , Gold, B. , Kapur, S. , Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning.. NeuroReport, 8, 1305– 1310 CrossrefGoogle Scholar

  • Goel, V. , Gold, B. , Kapur, S. , Houle, S. (1998). Neuroanatomical correlates of human reasoning.. Journal of Cognitive Neuroscience, 10, 293– 302 CrossrefGoogle Scholar

  • Hitch, G. J. , Baddeley, A. (1976). Verbal reasoning and working memory.. Quarterly Journal of Experimental Psychology, 28, 603– 621 CrossrefGoogle Scholar

  • Huttenlocher, J. (1968). Constructing spatial images: A strategy in reasoning.. Psychological review, 75, 550– 560 CrossrefGoogle Scholar

  • Johnson-Laird, P. N. (1972). The three-term series problem.. Cognition, 1, 58– 82 CrossrefGoogle Scholar

  • Johnson-Laird, P. N. (1983). Mental models. . Cambridge: Cambridge University Press. Google Scholar

  • Johnson-Laird, P. N. (1998). Imagery, visualization, and thinking.. In J. Hochberg (Ed.), Perception and Cognition at Century’s End (pp. 441-467). San Diego: Academic Press. CrossrefGoogle Scholar

  • Johnson-Laird, P. N. , Byrne, R. M. J. (1991). Deduction. . Hove, UK: Lawrence Erlbaum Associates. Google Scholar

  • Johnson-Laird, P. N. , Byrne, R. M. J. , Tabossi, P. (1989). Reasoning by model: The case of multiple quantification.. Psychological review, 96, 658– 673 CrossrefGoogle Scholar

  • Klauer, K. C. (1998). Visuelle und räumliche Interferenzen beim Schlußfolgern.. Kognitionswissenschaft, 1, 11– 18 CrossrefGoogle Scholar

  • Klauer, K. C. , Oberauer, K. , Roßnagel, C. , Musch, J. (1996). Mentale Modelle und mentale Bilder.. Zeitschrift für Psychologie, 204, 41– 54 Google Scholar

  • Klauer, K. C. , Stegmaier, R. , Meiser, T. (1997). Working memory involvement in propositional and spatial reasoning.. Thinking & Reasoning, 3, 9– 47 CrossrefGoogle Scholar

  • Knauff, M. (1997). Räumliches Wissen und Gedächtnis. . Wiesbaden: Deutscher Universitätsverlag. CrossrefGoogle Scholar

  • Knauff, M. (1999). The cognitive adequacy of Allen’s interval calculus for qualitative spatial representation and reasoning.. Spatial Cognition and Computation, 1, 261– 290 CrossrefGoogle Scholar

  • Knauff, M. (2001). Vivid reasoning, mind, and brain. Habilitationsschrift. . Freiburg: Philosophische Fakultät I der Universität Freiburg. Google Scholar

  • Knauff, M. , Johnson-Laird, P. N. (2000a). Visual and spatial representations in spatial reasoning.. In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society (pp. 759-765). Mahwah, NJ: Lawrence Erlbaum Associates. Google Scholar

  • Knauff, M. , Johnson-Laird, P. N. (2000b). Effekte der Vorstellbarkeit beim räumlichen und nicht-räumlichen relationalen Schließen.. In D. Vorberg et al. (Hrsg.), Experimentelle Psychologie: Beiträge zur 42. Tagung experimentell arbeitender Psychologen. Lengerich: Pabst Science Publishers. Google Scholar

  • Knauff, M. , Johnson-Laird, P. N. in Druck Visual imagery can impede reasoning.. Memory & Cognition, Google Scholar

  • Knauff, M. , Jola, C. , Strube, G. (2001). Spatial reasoning: No need for visual information.. In D. Montello et al. (Eds.), Spatial Information Theory. Proceedings of COSIT’01 (pp. 447-57). New York: Springer. Google Scholar

  • Knauff, M. , Jola, C. , Strube, G. , Rauh, R. , Schlieder, C. (2001). Visuo-spatial working memory involvement in relational reasoning. . Manuscript submitted for publication. Google Scholar

  • Knauff, M. , Kassubek, J. , Mulack, T. , Greenlee, M. W. (2000). Cortical activation evoked by visual mental imagery as measured by functional MRI.. NeuroReport, 11, 3957– 3962 CrossrefGoogle Scholar

  • Knauff, M. , Mulack, T. , Johnson, M. K. (2000). The neural substrates of spatial thinking: Results from an experiment using functional magnetic resonance imaging.. Journal of Cognitive Neuroscience, 131, Supplement Google Scholar

  • Knauff, M. , Mulack, T. , Kassubek, J. , Salih, H. R. , Greenlee, M. W. in Druck Spatial imagery in deductive reasoning: A functional MRI study.. Cognitive Brain Research, Google Scholar

  • Knauff, M. , Rauh, R. , Schlieder, C. (1995). Preferred mental models in qualitative spatial reasoning: A cognitive assessment of Allen’s calculus.. In J. Moore & J. F. Lehman (Eds.), Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society (pp. 200-205). Mahwah, NJ: Lawrence Erlbaum Associates. Google Scholar

  • Knauff, M. , Rauh, R. , Schlieder, C. , Strube, G. (1997). Analogizität und Perspektive in räumlichen mentalen Modellen.. In C. Umbach, M. Grabski & R. Hörnig (Hrsg.), Perspektive in Sprache und Raum (S. 35-60). Wiesbaden: Deutscher Universitätsverlag. CrossrefGoogle Scholar

  • Knauff, M. , Rauh, R. , Schlieder, C. , Strube, G. (1998a). Mental models in spatial reasoning.. In C. Freska, C. Habel & K. F. Wender (Eds.), Spatial cognition - An interdisciplinary approach to representing and processing spatial knowledge (pp. 267-291). Berlin: Springer. CrossrefGoogle Scholar

  • Knauff, M. , Rauh, R. , Schlieder, C. , Strube, G. (1998b). Continuity effect and figural bias in spatial relational inference.. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 573-578). Mahwah, NJ: Lawrence Erlbaum Associates. Google Scholar

  • Kosslyn, S. M. (1980). Image and mind. . Cambridge, MA: Harvard University Press. Google Scholar

  • Kosslyn, S. M. (1994). Image and brain. . Cambridge, MA: MIT Press. CrossrefGoogle Scholar

  • Kosslyn, S. M. , Alpert, N. M. , Thompson, W. L. , Maljkovic, V. , Weise, S. B. , Chabris, C. F. , Hamilton, S. E. , Rauch, S. L. , Buonanno, F. S. (1993). Visual mental imagery activates topographically organized visual cortex: PET investigations.. Journal of Cognitive Neuroscience, 5, 263– 287 CrossrefGoogle Scholar

  • Kosslyn, S. M. , Pascual-Leone, A. , Felician, O. , Camposano, S. , Keenan, J. P. , Thompson, W. L. , Ganis, G. , Sukel, K. E. , Alpert, N. M. (1999). The role of area 17 in visual imagery: Convergent evidence from PET and rTMS.. Science, 284, 167– 170 CrossrefGoogle Scholar

  • Kosslyn, S. M. , Thompson, W. L. , Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study.. NeuroImage, 6, 320– 334 CrossrefGoogle Scholar

  • Landau, B. , Jackendoff, R. (1993). “What“ and “where“ in spatial language and spatial cognition.. Behavioral and brain sciences, 16, 217– 265 CrossrefGoogle Scholar

  • Logie, R. H. (1995). Visuo-spatial working memory. . Hove, UK: Lawrence Erlbaum Associates. Google Scholar

  • McConnell, J. , Quinn, J. G. (2000). Interference in visual working memory.. Quarterly Journal of Experimental Psychology, 53A 53– 67 CrossrefGoogle Scholar

  • Meiser, T. , Klauer, K. C. , Naumer, B. (2001). Propositional reasoning and working memory: The role of prior training and pragmatic content.. Acta Psychologica, 106, 303– 327 CrossrefGoogle Scholar

  • Mellet, E. , Tzourio-Mazoyer, N. , Bricogne, S. , Mazoyer, B. , Kosslyn, S. M. , Denis, M. (2000). Functional anatomy of high-resolution visual mental imagery.. Journal of Cognitive Neuroscience, 12, 98– 109 CrossrefGoogle Scholar

  • Mellet, E. , Tzourio, N. , Crivello, F. , Joliot, M. , Denis, M. , Mazoyer, B. (1996). Functional anatomy of spatial mental imagery generated from verbal instructions.. The Journal of Neuroscience, 16, 6504– 6512 CrossrefGoogle Scholar

  • Mellet, E. , Tzourio, N. , Denis, M. , Mazoyer, B. (1995). A positron emission tomography study of visual and mental exploration.. Journal of Cognitive Neuroscience, 7, 433– 445 CrossrefGoogle Scholar

  • Metzinger, T. (1993). Subjekt und Selbstmodell. . Paderborn: Schöningh. Google Scholar

  • Milner, A. D. , Goodale, M. A. (1995). The visual brain in action. . Oxford: Oxford University Press. Google Scholar

  • Navon, D. , Gopher, D. (1979). On the economy of the human-processing system.. Psychological review, 86, 214– 255 CrossrefGoogle Scholar

  • Newcombe, F. , Ratcliff, G. (1989). Disorders of visuo-spatial analysis.. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (pp. 333-356). Amsterdam: Elsevier. Google Scholar

  • Newstead, S. E. , Pollard, P. , Griggs, R. A. (1986). Response bias in relational reasoning.. Bulletin of the Psychonomic Society, 2, 95– 98 CrossrefGoogle Scholar

  • Osherson, D. , Perani, D. , Cappa, S. , Schnur, T. , Grassi, F. , Fazio, F. (1998). Distinct brain loci in deductive versus probabilistic reasoning.. Neuropsychologia, 36, 369– 376 CrossrefGoogle Scholar

  • Prabhakaran, V. , Smith, J. A. , Desmond, J. E. , Glover, G. H. , Gabrielli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test.. Cognitive Psychology, 33, 43– 63 CrossrefGoogle Scholar

  • Quinn, J. G. (1994). Towards a clarification of spatial processing.. Quarterly Journal of Experimental Psychology, 47A 465– 480 CrossrefGoogle Scholar

  • Quinn, J. G. , McConnell, J. (1996). Irrelevant pictures in Visual Working Memory.. Quarterly Journal of Experimental Psychology, 49A 200– 215 CrossrefGoogle Scholar

  • Quinn, J. G. , McConnell, J. (1999). Manipulation of interference in the passive visual store.. European Journal of Cognitive Psychology, 11, 373– 389 CrossrefGoogle Scholar

  • Rauh, R. , Schlieder, C. , Knauff, M. (1996). Cognitive bias in spatial relational inference: The role of preferred mental models in reducing inferential complexity.. In Abstracts of Accepted Contributions to the 3rd International Conference on Thinking (pp. 1-5). London: University College. Google Scholar

  • Richardson, J. T. E. (1987). The role of mental imagery in models of transitive inference.. British Journal of Psychology, 78, 189– 203 CrossrefGoogle Scholar

  • Roland, P. E. , Gulyas, B. (1994). Visual imagery and visual representation.. Trends in Neurosciences, 17, 281– 287 CrossrefGoogle Scholar

  • Rueckl, J. G. , Cave, K. R. , Kosslyn, S. M. (1989). Why are “what“ and “where“ processed by separate cortical visual systems? A computational investigation.. Journal of Cognitive Neuroscience, 1, 171– 186 CrossrefGoogle Scholar

  • Sabbah, P. , Simond, G. , Levrier, O. , Habib, M. , Trabaud, V. , Murayama, N. , Mazoyer, B. M. , Briant, J. F. , Raybaud, C. , Salamon, G. (1995). Functional magnetic resonance imaging at 1.5 T during sensorimotor and cognitive tasks.. European Journal of Neurology, 35, 131– 136 CrossrefGoogle Scholar

  • Shaver, P. , Pierson, L. , Lang, S. (1975). Converging evidence for the functional significance of imagery in problem solving.. Cognition, 3, 359– 375 CrossrefGoogle Scholar

  • Shepard, R. N. , Cooper, L. A. (1982). Mental images and their transformations. . Cambridge, MA: MIT Press. Google Scholar

  • Smith, E. E. , Jonides, J. (1997). Working memory: A view from neuroimaging.. Cognitive Psychology, 1, 5– 42 CrossrefGoogle Scholar

  • Smith, E. E. , Jonides, J. , Koeppe, R. A. , Awh, E. , Schuhmacher, E. H. , Minoshima, S. (1995). Spatial versus object working memory: PET investigations.. Journal of Cognitive Neuroscience, 7, 337– 356 CrossrefGoogle Scholar

  • Steiner, G. (1980). Visuelle Vorstellungen beim Lösen von elementaren Problemen. . Stuttgart: Klett-Cotta. Google Scholar

  • Sternberg, R. J. (1980). Representation and process in linear syllogistic reasoning.. Journal of Experimental Psychology: General, 109, 119– 159 CrossrefGoogle Scholar

  • Suler, J. R. , Rizziello, J. (1987). Imagery and verbal processes in creativity.. Journal of Creative Behaviour, 21, 1– 6 CrossrefGoogle Scholar

  • Titchener, E. B. (1909). Lectures on the experimental psychology of the thought processes. . New York: Macmillan. CrossrefGoogle Scholar

  • Toms, M. , Morris, N. , Ward, D. (1993). Working memory and conditional reasoning.. Quarterly Journal of Experimental Psychology, 46A 679– 699 CrossrefGoogle Scholar

  • Tye, M. (1991). The imagery debate. . Cambridge, MA.: MIT Press. Google Scholar

  • Ungerleider, L. G. (1996). Functional brain imaging studies of cortical mechanisms for memory.. Science, 270, 769– 775 CrossrefGoogle Scholar

  • Ungerleider, L. G. , Mishkin, M. (1982). Two cortical visual systems.. In D. J. Ingle, M. A. Goodale & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549-586). Cambridge, MA: MIT Press. Google Scholar

  • Vandierendonck, A. , De Vooght, G. (1997). Working memory constraints on linear reasoning with spatial and temporal contents.. The Quarterly Journal of Experimental Psychology, 50A 803– 820 CrossrefGoogle Scholar

  • Watson, J. B. (1913). Psychology as the behaviorist views it.. Psychological review, 20, 158– 177 CrossrefGoogle Scholar

  • Wender, K. F. , Wagener, M. (1990). Zur Verarbeitung räumlicher Informationen: Modelle und Experimente.. Kognitionswissenschaft, 1, 4– 14 Google Scholar