Skip to main content
Original Articles and Reviews

Cognitive Impairment in Old Age

Is the Shift From Healthy to Pathological Aging Responsive to Prevention?

Published Online:https://doi.org/10.1027/1016-9040/a000391

Abstract. A decline in cognitive functioning is part of physiological aging. Accelerated cognitive decline is frequently linked to pathological changes, mostly due to Alzheimer’s Disease (AD), but is present also in Mild Cognitive Impairment (MCI) which is a predictor of transition to dementia. This review aims to summarize possible preventive biological and psychological treatments in different stages of lifespan to avoid more rapid cognitive decline and prevent pathological aging. Psychophysiological approaches aim to prevent brain damage and inflammation, two factors playing probably a major role in middle and old age. Interventions on working memory and imagery, using “cognitive reserve,” are beneficial for tolerating neuropathological age-related changes. Some controversial results are outlined, suggesting explanations for the inconsistency of findings. Although clear evidence from interventional studies is lacking, it seems that multi-domain interventions should be recommended to avoid or delay cognitive decline.

References

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Ageing-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 270–279. https://doi.org/10.1016/j.jalz.2011.03.008 First citation in articleCrossrefGoogle Scholar

  • Amano, T., Morrow-Howell, N., & Park, S. (2019). Patterns of social engagement among older adults with mild cognitive impairment. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences. Advance online publication. https://doi.org/10.1093/geronb/gbz051 First citation in articleCrossrefGoogle Scholar

  • Andrieu, S., Guyonnet, S., Coley, N., Cantet, C., Bonnefoy, M., Bordes, S., … Olivier-Abbal, P. (2017). Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. The Lancet, Neurology, 16, 377–389. https://doi.org/10.1016/S1474-4422(17)30040-6 First citation in articleCrossrefGoogle Scholar

  • Apostolova, L. G., & Cummings, J. L. (2008). Neuropsychiatric manifestations in mild cognitive impairment: A systematic review of the literature. Dementia and Geriatric Cognitive Disorders, 25, 115–126. https://doi.org/10.1159/000112509 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. A. BowerEd., Recent advances in learning and motivation (pp. 47–90). New York, NY: Academic Press. First citation in articleGoogle Scholar

  • Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., … ACTIVE Study Group. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. Journal of the American Medical Association, 288, 2271–2281. https://doi.org/10.1001/jama.288.18.2271 First citation in articleCrossrefGoogle Scholar

  • Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet, Neurology, 10, 819–828. https://doi.org/10.1016/s1474-4422(11)70072-2 First citation in articleCrossrefGoogle Scholar

  • Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., & Fox, N. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. The New England Journal of Medicine, 367, 795–804. https://doi.org/10.1056/NEJMoa1202753 First citation in articleCrossrefGoogle Scholar

  • Belleville, S. (2008). Cognitive training for persons with mild cognitive impairment. International Psychogeriatrics, 20, 57–66. https://doi.org/10.1017/s104161020700631x First citation in articleCrossrefGoogle Scholar

  • Birks, J. (2006). Cholinesterase inhibitors for Alzheimer’s disease. The Cochrane Database of Systematic Reviews, 1, Cd005593. https://doi.org/10.1002/14651858.cd005593 First citation in articleGoogle Scholar

  • Blanchet, S., Chikhi, S., & Maltais, D. (2018). The benefits of physical activities on cognitive and mental health in healthy and pathological aging. Geriatrie et Psychologie Neuropsychiatrie Du Vieillissement, 16, 197–205. https://doi.org/10.1684/pnv.2018.0734 First citation in articleCrossrefGoogle Scholar

  • Borella, E., Carretti, B., & De Beni, R. (2008). Working memory and inhibition across the adult life-span. Acta Psychologica, 128, 33–44. https://doi.org/10.1016/j.actpsy.2007.09.008 First citation in articleCrossrefGoogle Scholar

  • Bourassa, K. J., Memel, M., Woolverton, C., & Sbarra, D. A. (2017). Social participation predicts cognitive functioning in aging adults over time: Comparisons with physical health, depression, and physical activity. Aging & Mental Health, 21, 133–146. https://doi.org/10.1080/13607863.2015.1081152 First citation in articleCrossrefGoogle Scholar

  • Briggs, S. D., Raz, N., & Marks, W. (1999). Age-related deficits in generation and manipulation of mental images: The role of sensorimotor speed and working memory. Psychology and Aging, 14, 427–435. https://doi.org/10.1037/0882-7974.14.3.427 First citation in articleCrossrefGoogle Scholar

  • Carlson, M. C., Helms, M. J., Steffens, D. C., Burke, D. C., Potter, G. G., & Plassman, B. L. (2008). Midlife activity predicts risk of dementia in older male twin pairs. Alzheimer’s & Dementia, 4, 324–331. https://doi.org/10.1016/j.jalz.2008.07.002 First citation in articleCrossrefGoogle Scholar

  • Carretti, B., Borella, E., Fostinelli, S., & Zavagnin, M. (2013). Benefits of training working memory in amnestic mild cognitive impairment: Specific and transfer effects. International Psychogeriatrics, 25, 617–626. https://doi.org/10.1017/S1041610212002177 First citation in articleCrossrefGoogle Scholar

  • Castellano, S., Guarnera, M., & Di Nuovo, S. (2014). Imagery in healthy and in cognitively impaired ageing. Clinical Gerontologist, 38, 103–113. https://doi.org/10.1080/07317115.2014.990599 First citation in articleCrossrefGoogle Scholar

  • Cooper, C., Li, R., Lyketsos, C., & Livingston, G. (2013). Treatment for mild cognitive impairment: Systematic review. British Journal of Psychiatry, 203, 255–264. https://doi.org/10.1192/bjp.bp.113.127811 First citation in articleCrossrefGoogle Scholar

  • Corbett, A., Owen, A., Hampshire, A., Grahn, J., Stenton, R., Dajani, S., & Ballard, C. (2015). The effect of an online cognitive training package in healthy older adults: An online randomized controlled trial. Journal of the American Medical Directors Association, 16, 990–997. https://doi.org/10.1016/j.jamda.2015.06.014 First citation in articleCrossrefGoogle Scholar

  • Crowe, M., Andel, R., Pedersen, N. L., Johansson, B., & Gatz, M. (2003). Does participation in leisure activities lead to reduced risk of Alzheimer’s disease? A prospective study of Swedish Twins. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 58, 249–255. https://doi.org/10.1093/geronb/58.5.P249 First citation in articleCrossrefGoogle Scholar

  • Daviglus, M. L., Plassman, B. L., Pirzada, A., Bell, C. C., Bowen, P. E., & Burke, J. R. (2011). Risk factors and preventive interventions for Alzheimer disease: State of the science. Archives of Neurology, 68, 1185–1190. https://doi.org/10.1001/archneurol.2011.100 First citation in articleCrossrefGoogle Scholar

  • De Beni, R., & Moè, A. (2003). Presentation modality effects in studying passages. Are mental images always effective? Applied Cognitive Psychology, 17, 309–324. https://doi.org/10.1002/acp.867 First citation in articleCrossrefGoogle Scholar

  • De Beni, R., Pazzaglia, F., & Gardini, S. (2007). The generation and maintenance of visual mental images: Evidence from image type and ageing. Brain and Cognition, 63, 271–278. https://doi.org/10.1016/j.bandc.2006.09.004 First citation in articleCrossrefGoogle Scholar

  • Defina, L. F., Willis, B. L., Radford, N. B., Gao, A., Leonard, D., Haskell, W. L., & Berry, J. D. (2013). The association between midlife cardiorespiratory fitness levels and later-life dementia: A cohort study. Annals of Internal Medicine, 158, 162–168. https://doi.org/10.7326/0003-4819-158-3-201302050-00005 First citation in articleCrossrefGoogle Scholar

  • DeKosky, S. T., Williamson, J. D., Fitzpatrick, A. L., Kronmal, R. A., Ives, D. G., & Saxton, J. A. (2008). Ginkgo biloba for prevention of dementia: A randomized controlled trial. Journal of the American Medical Association, 300, 2253–2262. https://doi.org/10.1001/jama.2008.683 First citation in articleCrossrefGoogle Scholar

  • Di Nuovo, S., Castellano, S., & Guarnera, M. (2014). Mental Imagery Test. Florence, Italy: Hogrefe. First citation in articleGoogle Scholar

  • Dotson, V. M., Beydoun, M. A., & Zonderman, A. B. (2010). Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology, 75, 27–34. https://doi.org/10.1212/WNL.0b013e3181e62124 First citation in articleCrossrefGoogle Scholar

  • Espeland, M. A., Rapp, S. R., Shumaker, S. A., Brunner, R., Manson, J. E., & Sherwin, B. (2004). Conjugated equine estrogens and global cognitive function in postmenopausal women. Women’s Health Initiative Memory Study. Journal of the American Medical Association, 291, 2959–2968. https://doi.org/10.1001/jama.291.24.2959 First citation in articleCrossrefGoogle Scholar

  • Fallahpour, M., Borell, L., Luborsky, M., & Nygård, L. (2016). Leisure-activity participation to prevent later-life cognitive decline: A systematic review. Scandinavian Journal of Occupational Therapy, 23, 162–197. https://doi.org/10.3109/11038128.2015.1102320 First citation in articleCrossrefGoogle Scholar

  • Fernandes, J., Arida, R. M., & Gomez-Pinilla, F. (2017). Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neuroscience and Biobehavioral Reviews, 80, 443–456. https://doi.org/10.1016/j.neubiorev.2017.06.012 First citation in articleCrossrefGoogle Scholar

  • Flicker, C., Ferris, S. H., & Reisberg, B. (1991). Mild cognitive impairment in the elderly: Predictor of dementia. Neurology, 41, 1006–1009. https://doi.org/10.1212/wnl.41.7.1006 First citation in articleCrossrefGoogle Scholar

  • Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet, Neurology, 3, 343–353. https://doi.org/10.1016/S1474-4422(04)00767-7 First citation in articleCrossrefGoogle Scholar

  • Friedland, R. P., Fritsch, T., Smyth, K. A., Koss, E., Lerner, A. J., Chen, C. H., & Debanne, S. M. (2001). Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proceedings of the National Academy of Sciences of the United States of America, 98, 3440–3445. https://doi.org/10.1073/pnas.061002998 First citation in articleCrossrefGoogle Scholar

  • Gallagher, D., Fischer, C. E., & Iaboni, A. (2017). Neuropsychiatric symptoms in mild cognitive impairment. The Canadian Journal of Psychiatry, 62, 161–169. https://doi.org/10.1177/0706743716648296 First citation in articleCrossrefGoogle Scholar

  • Ganguli, M., Dodge, H. H., Shen, C., & DeKosky, S. T. (2004). Mild cognitive impairment, amnestic type: An epidemiologic study. Neurology, 63, 115–121. https://doi.org/10.1212/01.wnl.0000132523.27540.81 First citation in articleCrossrefGoogle Scholar

  • Gates, N., Singh, M. A. F., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized controlled trials. The American Journal of Geriatric Psychiatry, 21, 1086–1097. https://doi.org/10.1016/j.jagp.2013.02.018 First citation in articleCrossrefGoogle Scholar

  • Goh, J. O., & Park, D. C. (2009). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 27, 391–403. https://doi.org/10.3233/RNN-2009-0493 First citation in articleCrossrefGoogle Scholar

  • Groot, C., Hooghiemstra, A. M., Raijmakers, P. G. H. M., Van Berckel, B. N. M., Scheltens, P., Scherder, E. J. A., … Ossenkoppele, R. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Research Reviews, 25, 13–23. https://doi.org/10.1016/j.arr.2015.11.005 First citation in articleCrossrefGoogle Scholar

  • Hall, C. B., Derby, C., LeValley, A., Katz, M. J., Verghese, J., & Lipton, R. B. (2007). Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 69, 1657–1664. https://doi.org/10.1212/01.wnl.0000278163.82636.30 First citation in articleCrossrefGoogle Scholar

  • Harada, C. N., Natelson Love, M. C., & Triebel, K. L. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29, 737–752. https://doi.org/10.1016/j.cger.2013.07.002 First citation in articleCrossrefGoogle Scholar

  • Haslam, C., Cruwys, T., Milne, M., Kan, C. H., & Haslam, S. A. (2016). Group ties protect cognitive health by promoting social identification and social support. Journal of Aging and Health, 28, 244–266. https://doi.org/10.1177/0898264315589578 First citation in articleCrossrefGoogle Scholar

  • Heyn, P., Abreu, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 85, 1694–1704. https://doi.org/10.1016/j.apmr.2004.03.019 First citation in articleCrossrefGoogle Scholar

  • Holmes, E. A., & Mathews, A. (2005). Mental imagery and emotion: A special relationship? Emotion, 5, 489–497. https://doi.org/10.1037/1528-3542.5.4.489 First citation in articleCrossrefGoogle Scholar

  • Hsu, D., & Marshall, G. (2017). Primary and secondary prevention trials in Alzheimer disease: Looking back, moving forward. Current Alzheimer Research, 14, 426–440. https://doi.org/10.2174/1567205013666160930112125 First citation in articleGoogle Scholar

  • Hussey, E. P., Smolinsky, J. G., Piryatinsky, I., Budson, A. E., & Ally, B. A. (2012). Using mental imagery to improve memory in patients with Alzheimer disease: Trouble generating or remembering the mind’s eye? Alzheimer Disease and Associated Disorders, 26, 124–134. https://doi.org/10.1097/wad.0b013e31822e0f73 First citation in articleCrossrefGoogle Scholar

  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., … Silverberg, N. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 14, 535–562. https://doi.org/10.1016/j.jalz.2018.02.018 First citation in articleCrossrefGoogle Scholar

  • Jack, C. R., Wiste, H. J., Weigand, S. D., Rocca, W. A., Knopman, D. S., Mielke, M. M., … Petersen, R. C. (2014). Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: A cross-sectional study. The Lancet, Neurology, 13, 997–1005. https://doi.org/10.1016/S1474-4422(14)70194-2 First citation in articleCrossrefGoogle Scholar

  • Jak, A. J. (2012). The impact of physical and mental active on cognitive aging. Current Topics Behavior Neuroscience, 10, 273–291. https://doi.org/10.1007/7854_2011_141 First citation in articleCrossrefGoogle Scholar

  • Jeong, J. H., Na, H. R., Choi, S. H., Kim, J., Na, D. L., Seo, S. W., … Han, S. H. (2016). Group-and home-based cognitive intervention for patients with mild cognitive impairment: A randomized controlled trial. Psychotherapy and Psychosomatics, 85, 198–207. https://doi.org/10.1159/000442261 First citation in articleCrossrefGoogle Scholar

  • Kalkstein, J., Checksfield, K., Bollinger, J., & Gazzaley, A. (2011). Diminished top-down control underlies a visual imagery deficit in normal ageing. The Journal of Neuroscience, 31, 15768–15774. https://doi.org/10.1523/jneurosci.3209-11.2011 First citation in articleCrossrefGoogle Scholar

  • Karssemeijer, E. G. A., Aaronson, J. A., Bossers, W. J., Smits, T., Olde Rikkert, M. G. M., & Kessels, R. P. C. (2017). Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Research Review, 40, 75–83. https://doi.org/10.1016/j.arr.2017.09.003 First citation in articleCrossrefGoogle Scholar

  • Kisling, L. A., & Das, J. M. (2019). Prevention strategies. Treasure Island, FL: StatPearls Publishing. First citation in articleGoogle Scholar

  • Kivipelto, M., Helkala, E. L., Hanninen, T., Laakso, M. P., Hallikainen, M., Alhainen, K., … Nissinen, A. (2001). Midlife vascular risk factors and late-life mild cognitive impairment: A population-based study. Neurology, 56, 1683–1689. https://doi.org/10.1212/wnl.56.12.1683 First citation in articleCrossrefGoogle Scholar

  • Klencklen, G., Després, O., & Dufour, A. (2012). What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Research Reviews, 11, 123–135. https://doi.org/10.1016/j.arr.2011.10.001 First citation in articleCrossrefGoogle Scholar

  • Köhler, C. A., Magalhaes, T. F., Oliveira, J. M. M. P., Alves, G. S., Knochel, C., Oertel-Knöchel, V., … Carvalho, A. F. (2016). Neuropsychiatric disturbances in Mild Cognitive Impairment (MCI): A systematic review of population-based studies. Current Alzheimer Research, 13, 1066–1082. https://doi.org/10.2174/1567205013666160502123129 First citation in articleCrossrefGoogle Scholar

  • Kondo, K., Niino, M., & Shido, K. (1994). A case-control study of Alzheimer’s disease in Japan–significance of life-styles. Dementia and Geriatric Cognitive Disorders, 5, 314–326. https://doi.org/10.1159/000106741 First citation in articleCrossrefGoogle Scholar

  • Kosslyn, S. M., Margolis, J. A., Goldknopf, E. J., Daly, P. F., & Barrett, A. M. (1990). Age differences in imagery abilities. Child Development, 61, 995–1010. https://doi.org/10.1111/j.1467-8624.1990.tb02837.x First citation in articleCrossrefGoogle Scholar

  • Kuiper, J. S., Zuidersma, M., Oude Voshaar, R. C., Zuidema, S. U., van den Heuvel, E. R., Stolk, R. P., & Smidt, N. (2015). Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 22, 39–57. https://doi.org/10.1016/j.arr.2015.04.006 First citation in articleCrossrefGoogle Scholar

  • LeBlanc, E. S., Janowsky, J., Chan, B. K., & Nelson, H. D. (2001). Hormone replacement therapy and cognition: Systematic review and meta-analysis. Journal of the American Medical Association, 285, 1489–1499. https://doi.org/10.1001/jama.285.11.1489 First citation in articleCrossrefGoogle Scholar

  • Li, J., Wang, Y. J., Zhang, M., Xu, Z. Q., Gao, C. Y., Fang, C. Q., … Zhou, H. D. (2011). Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology, 76, 1485–1491. https://doi.org/10.1212/WNL.0b013e318217e7a4 First citation in articleCrossrefGoogle Scholar

  • Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., & Ames, D. (2017). Dementia prevention, intervention, and care. Lancet, 390, 2673–2734. https://doi.org/10.1016/s0140-6736(17)31363-6 First citation in articleCrossrefGoogle Scholar

  • Luchsinger, J. A., Biggs, M. L., Kizer, J. R., Barzilay, J., Fitzpatrick, A., & Newman, A. (2013). Adiposity and cognitive decline in the cardiovascular health study. Neuroepidemiology, 40, 274–281. https://doi.org/10.1159/000345136 First citation in articleCrossrefGoogle Scholar

  • Maffei, L., Picano, E., Andreassi, M. G., Angelucci, A., Baldacci, F., Baroncelli, L., … Volpi, L. (2017). Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: The Train the Brain study. Scientific Reports, 7, 39471. https://doi.org/10.1038/srep39471 First citation in articleCrossrefGoogle Scholar

  • McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33, 865–882. https://doi.org/10.3233/RNN-150533 First citation in articleCrossrefGoogle Scholar

  • McGeer, P. L., Rogers, J., & McGeer, E. G. (2016). Inflammation, antiinflammatory agents, and Alzheimer’s disease: The last 22 years. Journal of Alzheimer’s Disease, 54, 853–857. https://doi.org/10.3233/jad-160488 First citation in articleCrossrefGoogle Scholar

  • Mewborn, C. M., Lindbergh, C. A., & Miller, L. S. (2017). Cognitive interventions for cognitively healthy, mildly impaired, and mixed samples of older adults: A systematic review and meta-analysis of randomized-controlled trials. Neuropsychology Review, 27, 403–439. https://doi.org/10.1007/s11065-017-9350-8 First citation in articleCrossrefGoogle Scholar

  • Missonnier, P., Deiber, M. P., Gold, G., Herrmann, F. R., Millet, P., Michon, A., … Giannakopoulos, P. (2007). Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience, 150, 346–356. https://doi.org/10.1016/j.neuroscience.2007.09.009 First citation in articleCrossrefGoogle Scholar

  • Naderi, A., Shaabani, F., Esmaeili, A., Salman, Z., Borella, E., & Degens, H. (2019). Effects of low and moderate acute resistance exercise on executive function in community-living older adults. Sport, Exercise, and Performance Psychology, 8, 106–122. https://doi.org/10.1037/spy0000135 First citation in articleCrossrefGoogle Scholar

  • Nagamatsu, L. S., Chan, A., Davis, J. C., Beattie, B. L., Graf, P., Voss, M. W., … Liu-Ambrose, T. (2013). Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: A 6-month randomized controlled trial. Journal of Aging Research, 2013, 861893. https://doi.org/10.1155/2013/861893 First citation in articleCrossrefGoogle Scholar

  • Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., & Kivipelto, M. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 385, 2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5 First citation in articleCrossrefGoogle Scholar

  • Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2017). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52, 154–160. https://doi.org/10.1136/bjsports-2016-096587 First citation in articleCrossrefGoogle Scholar

  • Nowrangi, M. A., Lyketsos, C. G., & Rosenberg, P. B. (2015). Principles and management of neuropsychiatric symptoms in Alzheimer’s dementia. Alzheimer’s Research & Therapy, 7, 12. https://doi.org/10.1186/s13195-015-0096-3 First citation in articleCrossrefGoogle Scholar

  • O’Bryant, S. E., Rissman, R. A., & Lyketsos, C. A. (2014). Proinflammatory endophenotype predicts treatment response in a multicenter trial of NSAIDs in AD. Alzheimer’s & Dementia, 10, 273–274. https://doi.org/10.1016/j.jalz.2014.04.447 First citation in articleCrossrefGoogle Scholar

  • Palladino, P., & De Beni, R. (2003). When mental images are very detailed: Image generation and memory performance as a function of age. Acta Psychologica, 113, 297–314. https://doi.org/10.1016/s0001-6918(03)00045-3 First citation in articleCrossrefGoogle Scholar

  • Palmer, K., Di Iulio, F., Varsi, A. E., Gianni, W., Sancesario, G., Caltagirone, C., & Spalletta, G. (2010). Neuropsychiatric predictors of progression from amnestic-mild cognitive impairment to Alzheimer’s disease: The role of depression and apathy. Journal of Alzheimer’s Disease, 20, 175–183. https://doi.org/10.3233/JAD-2010-1352 First citation in articleCrossrefGoogle Scholar

  • Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25, 103–112. https://doi.org/10.1177/0956797613499592 First citation in articleCrossrefGoogle Scholar

  • Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends Cognitive Science, 19, 590–602. https://doi.org/10.1016/j.tics.2015.08.003 First citation in articleCrossrefGoogle Scholar

  • Petersen, R. C. (Ed.). (2003). Mild cognitive impairment: Ageing to Alzheimer’s disease. New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Petersen, R. C., Lopez, O., Armstrong, M. J., Getchius, T. S. D., Ganguli, M., Gloss, D., … Rae-Grant, A. (2018). Practice guideline update summary: Mild cognitive impairment. Neurology, 90, 126–135. https://doi.org/10.1212/WNL.0000000000004826 First citation in articleCrossrefGoogle Scholar

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303–308. https://doi.org/10.1001/archneur.56.3.303 First citation in articleCrossrefGoogle Scholar

  • Petersen, R. C., Thomas, R., Grundman, M., Bennett, D., Doody, R., & Ferris, S. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. New England Journal of Medicine, 352, 2379–2388. https://doi.org/10.1056/nejmoa050151 First citation in articleCrossrefGoogle Scholar

  • Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J., & Jack, C. R. (2009). Mild cognitive impairment: Ten years later. Archives of Neurology, 66, 1447–1455. https://doi.org/10.1001/archneurol.2009.266 First citation in articleCrossrefGoogle Scholar

  • Piefke, M., Onur, Ö. A., & Fink, G. R. (2012). Aging-related changes of neural mechanisms underlying visual-spatial working memory. Neurobiology of Aging, 33, 1284–1297. https://doi.org/10.1016/j.neurobiolaging.2010.10.014 First citation in articleCrossrefGoogle Scholar

  • Poscia, A., Stojanovic, J., La Milia, D. I., Duplaga, M., Grysztar, M., Moscato, U., … Magnavita, N. (2018). Interventions targeting loneliness and social isolation among the older people: An update systematic review. Experimental Gerontology, 102, 133–144. https://doi.org/10.1016/j.exger.2017.11.017 First citation in articleCrossrefGoogle Scholar

  • Raz, N., Briggs, S. D., Marks, W., & Acker, J. D. (1999). Age-related deficits in generation and manipulation of mental images: The role of dorsolateral prefrontal cortex. Psychology and Aging, 14, 436–444. https://doi.org/10.1037/0882-7974.14.3 First citation in articleCrossrefGoogle Scholar

  • Rebok, G. W., Ball, K., Guey, L. T., Jones, R. N., Kim, H.-Y., King, J. W. & ACTIVE Study Group. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62, 16–24. https://doi.org/10.1111/jgs.12607 First citation in articleCrossrefGoogle Scholar

  • Reijnders, J., van Heugten, C., & van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mild cognitive impairment: A systematic review. Ageing Research Reviews, 12, 263–275. https://doi.org/10.1016/j.arr.2012.07.003 First citation in articleCrossrefGoogle Scholar

  • Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24, 355–370. https://doi.org/10.1007/s11065-014-9270-9 First citation in articleCrossrefGoogle Scholar

  • Richard, E., Schmand, B., Eikelenboom, P., Yang, S. C., Ligthart, S. A., Moll van Charante, E. P., & van Gool, W. A. (2012). Symptoms of apathy are associated with progression from mild cognitive impairment to Alzheimer’s disease in non-depressed subjects. Dementia and Geriatric Cognitive Disorders, 33, 204–209. https://doi.org/10.1159/000338239 First citation in articleCrossrefGoogle Scholar

  • Rosen, V. M., Bergeson, J. L., Putnam, K., Harwell, A., & Sunderland, T. (2002). Working memory and apolipoprotein E: What’s the connection? Neuropsychologia, 40, 2226–2233. https://doi.org/10.1016/S0028-3932(02)00132-X First citation in articleCrossrefGoogle Scholar

  • Russ, T. C., & Morling, J. R. (2012). Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database of Systematic Reviews, 9, CD009132. https://doi.org/10.1002/14651858.CD009132.pub2 First citation in articleGoogle Scholar

  • Ruthirakuhan, M., Herrmann, N., Vieira, D., Gallagher, D., & Lanctôt, K. L. (2019). The roles of apathy and depression in predicting Alzheimer disease: A longitudinal analysis in older adults with mild cognitive impairment. The American Journal of Geriatric Psychiatry, 27, 873–882. https://doi.org/10.1016/j.jagp.2019.02.003 First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A., Mitchell, D. R., Skovronek, E., & Babcock, R. L. (1989). Effects of adult age and working memory on reasoning and spatial abilities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 507–516. https://doi.org/10.1037/0278-7393.15.3.507 First citation in articleCrossrefGoogle Scholar

  • Saunders, N. L., & Summers, M. J. (2011). Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology, 25, 237–248. https://doi.org/10.1037/a0021134 First citation in articleCrossrefGoogle Scholar

  • Scarmeas, N., Levy, G., Tang, M. X., Manly, J., & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology, 57, 2236–2242. https://doi.org/10.1212/wnl.57.12.2236 First citation in articleCrossrefGoogle Scholar

  • Selkoe, D. J. (2011). Resolving controversies on the path to Alzheimer’s therapeutics. Nature Medicine, 17, 1060–1065. https://doi.org/10.1038/nm.2460 First citation in articleCrossrefGoogle Scholar

  • Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. Embo Molecular Medicine, 8, 595–608. https://doi.org/10.15252/emmm.201606210 First citation in articleCrossrefGoogle Scholar

  • Shah, T. M., Weinborn, M., Verdile, G., Sohrabi, H. R., & Martins, R. N. (2017). Enhancing cognitive functioning in healthy older adults: A systematic review of the clinical significance of commercially available computerized cognitive training in preventing cognitive decline. Neuropsychology Review, 27, 62–80. https://doi.org/10.1007/s11065-016-9338-9 First citation in articleCrossrefGoogle Scholar

  • Sharp, E. S., & Gatz, M. (2011). Relationship between education and dementia. Alzheimer Disease & Associated Disorders, 25, 289–304. https://doi.org/10.1097/WAD.0b013e318211c83c First citation in articleCrossrefGoogle Scholar

  • Sherman, D. S., Mauser, J., Nuno, M., & Sherzai, D. (2017). The efficacy of cognitive intervention in mild cognitive impairment (MCI): A meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 27, 440–484. https://doi.org/10.1007/s11065-017-9363-3 First citation in articleCrossrefGoogle Scholar

  • Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., & Ockene, J. K. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: The Women’s Health Initiative Memory Study: A randomized controlled trial. Journal of the American Medical Association, 289, 2651–2662. https://doi.org/10.1001/jama.291.24.2947 First citation in articleCrossrefGoogle Scholar

  • Singh-Manoux, A., Dugravot, A., Fournier, A., Abell, J., Ebmeier, K., Kivimäki, M., & Sabia, S. (2017). Trajectories of depressive symptoms before diagnosis of dementia: A 28-year follow-up study. Journal of the American Medical Association, Psychiatry, 74, 712–718. https://doi.org/10.1001/jamapsychiatry.2017.0660 First citation in articleGoogle Scholar

  • Snitz, B. E., O’Meara, E. S., Carlson, M. C., Arnold, A. M., Ives, D. G., & Rapp, S. (2009). Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. Journal of the American Medical Association, 302, 2663–2670. https://doi.org/10.1001/jama.2009.1913 First citation in articleCrossrefGoogle Scholar

  • Stern, C., & Munn, Z. (2010). Cognitive leisure activities and their role in preventing dementia: A systematic review. International Journal of Evidence‐Based Healthcare, 8, 2–17. https://doi.org/10.1111/j.1744-1609.2010.00150.x First citation in articleCrossrefGoogle Scholar

  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004 First citation in articleCrossrefGoogle Scholar

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet, Neurology, 11, 1006–1012. https://doi.org/10.1016/s1474-4422(12)70191-6 First citation in articleCrossrefGoogle Scholar

  • Stern, Y., Gurland, B., Tatemichi, T. K., Tang, M. X., Wilder, D., & Mayeux, R. (1994). Influence of education and occupation on the incidence of Alzheimer’s disease. Journal of the American Medical Association, 271, 1004–1010. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8139057 First citation in articleCrossrefGoogle Scholar

  • Thom, J. M., & Clare, L. (2011). Rationale for combined exercise and cognition focused interventions to improve functional independence in people with dementia. Gerontology, 57, 265–275. https://doi.org/10.1159/000322198 First citation in articleCrossrefGoogle Scholar

  • Tricco, A. C., Soobiah, C., Berliner, S., Ho, J. M., Ng, C. H., & Ashoor, H. M. (2013). Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: A systematic review and meta-analysis. Canadian Medical Association Journal, 185, 1393–1401. https://doi.org/10.1503/cmaj.130451 First citation in articleCrossrefGoogle Scholar

  • Wang, J., Tan, L., Wang, H. F., Tan, C. C., Meng, X. F., & Wang, C. (2015). Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis. Journal of Alzheimer’s Disease, 44, 385–396. https://doi.org/10.3233/jad-141506 First citation in articleCrossrefGoogle Scholar

  • Weinberg, R. S., & Gould, D. (2018). Foundations of sport and exercise psychology (7th ed.). Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Wirth, M., Haase, C. M., Villeneuve, S., Vogel, J., & Jagust, W. J. (2014). Neuroprotective pathways: Lifestyle activity, brain pathology, and cognition in cognitively normal older adults. Neurobiology of Aging, 35, 1873–1882. https://doi.org/10.1016/j.neurobiolaging.2014.02.015 First citation in articleCrossrefGoogle Scholar

  • Yaffe, K. (2018). Modifiable risk factors and prevention of dementia: What is the latest evidence? Journal of the American Medical Association, Internal Medicine, 178, 281–282. https://doi.org/10.1001/jamainternmed.2017.7299 First citation in articleGoogle Scholar

  • Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6, 19–33. https://doi.org/10.1177/1756285612461679 First citation in articleCrossrefGoogle Scholar

  • Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 4, CD005381. https://doi.org/10.1002/14651858.CD005381.pub4 First citation in articleGoogle Scholar

  • Zheng, G., Xia, R., Zhou, W., Tao, J., & Chen, L. (2016). Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 50, 1443–1450. https://doi.org/10.1136/bjsports-2015-095699 First citation in articleCrossrefGoogle Scholar