Skip to main content
Original Article

The EV Scaling Method for Variances of Latent Variables

Published Online:https://doi.org/10.1027/1614-2241/a000179

Abstract. The paper describes EV scaling for variances of latent variables included in confirmatory factor models. EV-scaled variances can be achieved in two ways: the estimation of variance parameters based on adjusted factor loadings and alternatively the summation of squared factor loadings obtained under the condition that the variance parameter is set equal to one. By definition, the second procedure yields values that are always positive. EV-scaled variances of latent variables show sizes similar to eigenvalues. The outcome of applying this scaling method is demonstrated in empirical data. The results of a simulation study reveal that the outcomes of the two ways virtually always correspond if the data are generated to include the contribution of a latent source. If there is no such source, the exclusion of solutions with negative error variances virtually always leads to correspondence.

References

  • Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332. https://doi.org/10.1007/BF02294359 First citation in articleCrossrefGoogle Scholar

  • Bandalos, D. L., & Gerstner, J. J. (2016). Using factor analysis in scale construction. In K. SchweizerC. DiStefanoEds., Principles and methods of test construction (pp. 26–51). Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. https://doi.org/10.1037/0033-2909.107.2.238 First citation in articleCrossrefGoogle Scholar

  • Borter, N., Troche, S. J., & Rammsayer, T. H. (2018). Speed- and accuracy-related measures of an intelligence test are differentially predicted by the speed and accuracy measures of a cognitive task. Intelligence, 71, 1–7. https://doi.org/10.1016/j.intell.2018.09.001 First citation in articleCrossrefGoogle Scholar

  • Browne, M. W., MacCallum, R. C., Kim, C. T., Andersen, B. L., & Glaser, R. (2002). When fit indices and residuals are incompatible. Psychological Methods, 7, 403–421. https://doi.org/10.1037/1082-989X.7.4.403 First citation in articleCrossrefGoogle Scholar

  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255. https://doi.org/10.1207/S15328007SEM0902_5 First citation in articleCrossrefGoogle Scholar

  • Chuang, J., Savalei, V., & Falk, C. F. (2015). Investigation of Type I error rates of three versions of robust chi-square difference tests. Structural Equation Modeling, 22, 517–530. https://doi.org/10.1080/10705511.2014.938713 First citation in articleCrossrefGoogle Scholar

  • DiStefano, C. (2016). Estimating fit with structural equation models. In K. SchweizerC. DiStefanoEds., Principles and methods of test construction (pp. 166–193). Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • DiStefano, C., & Motl, R. W. (2006). Further investigating method effects associated with negatively worded items on self-report surveys. Structural Equation Modeling, 13, 440–464. https://doi.org/10.1207/s15328007sem1303 First citation in articleCrossrefGoogle Scholar

  • Foldnes, N., & Olsson, U. H. (2015). Correcting too much or too little? The performance of three chi-square corrections. Multivariate Behavioral Research, 50, 533–543. https://doi.org/10.1080/00273171.2015.1036964 First citation in articleCrossrefGoogle Scholar

  • Franke, T. M., Ho, T., & Christie, C. A. (2012). The chi-square test: Often used and more often misinterpreted. American Journal of Evaluation, 33, 448–458. https://doi.org/10.1177/1098214011426594 First citation in articleCrossrefGoogle Scholar

  • Graham, J. M. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability. Educational and Psychological Measurement, 66, 930–944. https://doi.org/10.1177/0013164406288165 First citation in articleCrossrefGoogle Scholar

  • Jöreskog, K. G. (1970). A general method for analysis of covariance structure. Biometrika, 57, 239–257. https://doi.org/10.2307/2334833 First citation in articleCrossrefGoogle Scholar

  • Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36, 109–133. https://doi.org/10.1007/BF02291393 First citation in articleCrossrefGoogle Scholar

  • Jöreskog, K. G., & Sörbom, D. (2006). LISREL 8.80. Lincolnwood, IL: Scientific Software International. First citation in articleGoogle Scholar

  • Kolenikov, S., & Bollen, K. A. (2012). Testing negative error variances: Is a Heywood case a symptom of misspecification? Sociological Methods & Research, 41, 124–167. https://doi.org/10.1177/0049124112442138 First citation in articleCrossrefGoogle Scholar

  • Knowles, E. S. (1988). Item context effects on personality scales: Measuring changes the measure. Journal of Personality and Social Psychology, 55, 312–320. https://doi.org/10.1037/0022-3514.55.2.312 First citation in articleCrossrefGoogle Scholar

  • Little, T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural Equation Modeling, 13, 59–72. https://doi.org/10.1207/s15328007sem1301_3 First citation in articleCrossrefGoogle Scholar

  • Lozano, J. H. (2015). Are impulsivity and intelligence truly related constructs? Evidence based on the fixed-links model. Personality and Individual Differences, 85, 192–198. https://doi.org/10.1016/j.paid.2015.04.049 First citation in articleCrossrefGoogle Scholar

  • McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. NesselroadeR. B. CattellEds., Handbook of multivariate experimental psychology (2nd ed., pp. 561–614). New York, NY: Plenum Press. First citation in articleGoogle Scholar

  • McArdle, J. J., & Cattell, R. B. (1994). Structural equation models of factorial invariance in parallel proportional profiles and oblique confactor problems. Multivariate Behavioral Research, 29, 63–113. https://doi.org/10.1111/j.1750-8606.2009.00110.x First citation in articleCrossrefGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. https://doi.org/10.1006/cogp.1999.0734 First citation in articleCrossrefGoogle Scholar

  • Osborne, J. W. (2017). Regression & linear modeling. Best practice and modern methods. Thousand Oaks, CA: Sage. First citation in articleGoogle Scholar

  • Schwartz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 451–464. https://doi.org/10.1214/aos/1176344136 First citation in articleGoogle Scholar

  • Schweizer, K. (2010). Improving the interpretability of the variances of latent variables by uniform and factor-specific standardization of loadings. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 6, 152–159. https://doi.org/10.1027/1614-2241/a000017 First citation in articleLinkGoogle Scholar

  • Schweizer, K. (2011). Scaling variances of latent variables by standardizing loadings: Applications to working memory and the position effect. Multivariate Behavioral Research, 46, 938–955. https://doi.org/10.1080/00273171.2011.625312 First citation in articleCrossrefGoogle Scholar

  • Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika, 72, 133–144. https://doi.org/10.2307/2336343 First citation in articleCrossrefGoogle Scholar

  • Stoel, R. D., Galindo-Garre, F., Dolan, C., & van de Wittenboer, G. (2006). On the likelihood ratio test in structural equation modeling when parameters are subject to boundary constraints. Psychological Methods, 11, 439–455. https://doi.org/10.1037/1082-989x.11.4.439 First citation in articleCrossrefGoogle Scholar

  • Verbeke, G., & Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics, 59, 254–262. https://doi.org/10.1111/1541-0420.00032 First citation in articleCrossrefGoogle Scholar

  • Widaman, K. F. (1985). Hierarchically nested covariance structure models for multitrait-multimethod data. Applied Psychological Measurement, 9, 1–26. https://doi.org/10.1177/014662168500900101 First citation in articleCrossrefGoogle Scholar

  • Zaman, M. R., Paul, D. N. R., Akhter, N., Howlader, M. H., & Kabir, M. S. (2006). Chi-square mixture of chi-square distributions. Journal of Applied Sciences, 6, 243–246. https://doi.org/10.3923/jas.2006.243.246 First citation in articleCrossrefGoogle Scholar

  • Zeller, F., Reiss, S., & Schweizer, K. (2017). Is the item-position effect in achievement measures induced by increasing item Difficulty? Structural Equation Modeling, 24, 745–754. https://doi.org/10.1080/10705511.2017.1306706 First citation in articleCrossrefGoogle Scholar