Skip to main content
Original Article

VOTAT in Action

Exploring Epistemic Activities in Knowledge-Lean Problem-Solving Processes

Published Online:https://doi.org/10.1027/2151-2604/a000559

Abstract: In our study, we integrated the vary-one-thing-at-a-time (VOTAT) strategy within epistemic activities in knowledge-lean problem-solving. VOTAT, altering a single variable while keeping others constant, was examined through a dual approach: an empirical analysis with MicroDYN tasks and a theoretical discussion. Empirically, we identified differences among participants who fully engaged in the VOTAT loop, those with incomplete loops, and nonusers. These distinctions were evident in their problem-solving approaches, hypothesis formulation, and decision-making efficiency. Theoretically, we contextualized VOTAT's role within epistemic activities, extending its application beyond the specific tasks in our study. Our findings reveal that VOTAT's use markedly impacts problem-solving processes, demonstrating varied cognitive strategies among different participant groups. This has implications for understanding problem-solving cognition and designing tasks that better capture the nuances of epistemic activities.

References

  • Baker, R. S. (2019). Challenges for the future of educational data mining: The baker learning analytics prizes. Journal of Educational Data Mining, 11(1), 1–17. 10.5281/ZENODO.3554745 First citation in articleCrossrefGoogle Scholar

  • Brandl, L., Richters, C., Radkowitsch, A., Obersteiner, A., & Stadler, M. (2021). Simulation-based learning of complex skills: Predicting performance with theoretically derived process features. Psychological Test and Assessment Modeling, 63(4), 542–560. First citation in articleGoogle Scholar

  • Bunderson, C. V., Inouye, D. K., & Olsen, J. B. (1988). The four generations of computerized educational measurement. ETS Research Report Series, 1988(1), i–148. 10.1002/j.2330-8516.1988.tb00291.x First citation in articleCrossrefGoogle Scholar

  • Dörner, D., & Funke, J. (2017). Complex problem solving: What it is and what it is not. Frontiers in Psychology, 8, Article 1153. 10.3389/fpsyg.2017.01153 First citation in articleCrossrefGoogle Scholar

  • Fischer, F., Kollar I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., Fischer, M., Strijbos, J.-W., Heene, M., & Eberle, J. (2014). Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research, 2(2), 28–45. 10.14786/flr.v2i2.96 First citation in articleCrossrefGoogle Scholar

  • Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Thinking and Reasoning, 7(1), 69–89. 10.1080/13546780042000046 First citation in articleCrossrefGoogle Scholar

  • Gabadinho, A., Ritschard, G., Studer, M., & Müller, N. S. (2009). Mining sequence data in R with the TraMineR package: A user's guide. http://mephisto.unige.ch/pub/traminer/doc/1.8/traminer-1.8-users-guide.pdf First citation in articleGoogle Scholar

  • Giannakos, M., & Cukurova, M. (2023). The role of learning theory in multimodal learning analytics. British Journal of Educational Technology, 54(5), 1246–1267. 10.1111/bjet.13320 First citation in articleCrossrefGoogle Scholar

  • Goldhammer, F., Hahnel, C., Kroehne, U., & Zehner, F. (2021). From byproduct to design factor: On validating the interpretation of process indicators based on log data. Large-Scale Assessments in Education, 9(1), Article 20. 10.1186/s40536-021-00113-5 First citation in articleCrossrefGoogle Scholar

  • Goldhammer, F., Naumann, J., Rölke, H., Stelter, A., & Tóth, K. (2017). Relating product data to process data from computer-based competency assessment. In D. LeutnerJ. FleischerJ. GrünkornE. Klieme (Eds.), Competence assessment in education (pp. 407–425). Springer. 10.1007/978-3-319-50030-0_24 First citation in articleCrossrefGoogle Scholar

  • Greiff, S., Fischer, A., Stadler, M., & Wüstenberg, S. (2015). Assessing complex problem-solving skills with multiple complex systems. Thinking & Reasoning, 21(3), 356–382. 10.1080/13546783.2014.989263 First citation in articleCrossrefGoogle Scholar

  • Greiff, S., Niepel, C., Scherer, R., & Martin, R. (2016). Understanding students' performance in a computer-based assessment of complex problem solving: An analysis of behavioral data from computer-generated log files. Computers in Human Behavior, 61, 36–46. 10.1016/j.chb.2016.02.095 First citation in articleCrossrefGoogle Scholar

  • Greiff, S., Wüstenberg, S., & Avvisati, F. (2015). Computer-generated log-file analyses as a window into students' minds? A showcase study based on the PISA 2012 assessment of problem solving. Computers & Education, 91, 92–105. 10.1016/j.compedu.2015.10.018 First citation in articleCrossrefGoogle Scholar

  • Hahnel, C., Jung, A. J., & Goldhammer, F. (2023). Theory matters. European Journal of Psychological Assessment, 39(4), 271–279. 10.1027/1015-5759/a000776 First citation in articleLinkGoogle Scholar

  • Hahnel, C., Ramalingam, D., Kroehne, U., & Goldhammer, F. (2023). Patterns of reading behaviour in digital hypertext environments. Journal of Computer Assisted Learning, 39(3), 737–750. 10.1111/jcal.12709 First citation in articleCrossrefGoogle Scholar

  • He, Q., Borgonovi, F., & Paccagnella, M. (2019). Using process data to understand adults’ problem-solving behaviour in the programme for the international assessment of adult competencies (PIAAC): Identifying generalised patterns across multiple tasks with sequence mining. 10.1787/650918f2-en First citation in articleCrossrefGoogle Scholar

  • He, Q., Borgonovi, F., & Paccagnella, M. (2021). Leveraging process data to assess adults’ problem-solving skills: Using sequence mining to identify behavioral patterns across digital tasks. Computers & Education, 166, Article 104170. 10.1016/j.compedu.2021.104170 First citation in articleCrossrefGoogle Scholar

  • He, Q., & von Davier, M. (2015). Identifying feature sequences from process data in problem-solving items with N-grams. In L. A. van der ArkD. M. BoltW.-C. WangJ. A. DouglasS.-M. Chow (Eds.), Springer proceedings in mathematics & statistics. Quantitative psychology research (Vol. 140, pp. 173–190). Springer International Publishing. 10.1007/978-3-319-19977-1_13 First citation in articleCrossrefGoogle Scholar

  • Helske, S., & Helske, J. (2019). Mixture hidden Markov models for sequence data: The seqHMM Package in R. Journal of Statistical Software, 88(3), 1–32. 10.18637/jss.v088.i03 First citation in articleCrossrefGoogle Scholar

  • Knight, S., & Buckingham Shum, S. (2017). Theory and learning analytics. In C. LangG. SiemensA. WiseD. Gašević (Eds.), Handbook of learning analytics (pp. 17–22). Society for Learning Analytics Research (SoLAR). 10.18608/hla17.001 First citation in articleCrossrefGoogle Scholar

  • Krieger, F., Stadler, M., Bühner, M., Fischer, F., & Greiff, S. (2021). Assessing complex problem-solving skills in under 20 minutes. Psychological Test Adaptation and Development, 2(1), 80–92. 10.1027/2698-1866/a000009 First citation in articleLinkGoogle Scholar

  • Kröner, S., Plass, J., & Leutner, D. (2005). Intelligence assessment with computer simulations. Intelligence, 33(4), 347–368. 10.1016/j.intell.2005.03.002 First citation in articleCrossrefGoogle Scholar

  • Kuhn, D., & Dean, D. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16(11), 866–870. 10.1111/j.1467-9280.2005.01628.x First citation in articleCrossrefGoogle Scholar

  • Lotz, C., Scherer, R., Greiff, S., & Sparfeldt, J. R. (2017). Intelligence in action – effective strategic behaviors while solving complex problems. Intelligence, 64, 98–112. 10.1016/j.intell.2017.08.002 First citation in articleCrossrefGoogle Scholar

  • Lotz, C., Scherer, R., Greiff, S., & Sparfeldt, J. R. (2022). g's little helpers – VOTAT and NOTAT mediate the relation between intelligence and complex problem solving. Intelligence, 95, Article 101685. 10.1016/j.intell.2022.101685 First citation in articleCrossrefGoogle Scholar

  • OECD (2014). Creative problem solving: Students' skills in tackling real-life problems. PISA 2012 results/Organisation for Economic Co-operation and Development, Programme for International Student Assessment: Vol. V. https://www.voced.edu.au/content/ngv:63012 First citation in articleGoogle Scholar

  • R Core Team (2022). R: A language and environment for statistical computing [Computer software]. Statistical Computing. https://www.R-project.org/ First citation in articleGoogle Scholar

  • Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. 10.1109/5.18626 First citation in articleCrossrefGoogle Scholar

  • Richters, C., Stadler, M., Radkowitsch, A., Schmidmaier, R., Fischer, M. R., & Fischer, F. (2023). Who is on the right track? Behavior-Based prediction of diagnostic success in a collaborative diagnostic reasoning simulation. Large-Scale Assessments in Education, 11(1), Article 3. 10.1186/s40536-023-00151-1 First citation in articleCrossrefGoogle Scholar

  • Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39, 37–63. 10.1016/j.dr.2015.12.001 First citation in articleCrossrefGoogle Scholar

  • Sommerhoff, D., Codreanu, E., Nickl, M., Ufer, S., & Seidel, T. (2023). Pre-service teachers’ learning of diagnostic skills in a video-based simulation: Effects of conceptual vs. interconnecting prompts on judgment accuracy and the diagnostic process. Learning and Instruction, 83, Article 101689. 10.1016/j.learninstruc.2022.101689 First citation in articleCrossrefGoogle Scholar

  • Stadler, M., Fischer, F., & Greiff, S. (2019). Taking a closer look: An exploratory analysis of successful and unsuccessful strategy use in complex problems. Frontiers in Psychology, 10, Article 777. 10.3389/fpsyg.2019.00777 First citation in articleCrossrefGoogle Scholar

  • Stadler, M., Iliescu, D., & Greiff, S. (2021). Validly authentic. European Journal of Psychological Assessment, 37(6), 419–422. 10.1027/1015-5759/a000686 First citation in articleLinkGoogle Scholar

  • Stadler, M., Niepel, C., & Greiff, S. (2016). Easily too difficult: Estimating item difficulty in computer simulated microworlds. Computers in Human Behavior, 65, 100–106. 10.1016/j.chb.2016.08.025 First citation in articleCrossrefGoogle Scholar

  • Stadler, M., Pickal, A. J., Brandl, L., & Krieger, F. (2024). HMM – epistemic activities CPS [Data]. https://osf.io/vs4fw First citation in articleGoogle Scholar

  • Stender, A., Schwichow, M., Zimmerman, C., & Härtig, H. (2018). Making inquiry-based science learning visible: The influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40(15), 1812–1831. 10.1080/09500693.2018.1504346 First citation in articleCrossrefGoogle Scholar

  • Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika, 85(2), 378–397. 10.1007/s11336-020-09708-3 First citation in articleCrossrefGoogle Scholar

  • Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51(1), Article 1. 10.2307/1129583 First citation in articleCrossrefGoogle Scholar

  • Wong, J., Baars, M., de Koning, B. B., van der Zee, T., Davis, D., Khalil, M., Houben, G.-J., & Paas, F. (2019). Educational theories and learning analytics: From data to knowledge. In D. IfenthalerD.-K. MahJ. Y.-K. Yau (Eds.), Utilizing learning Analytics to support study success (pp. 3–25). Springer International Publishing. 10.1007/978-3-319-64792-0_1 First citation in articleCrossrefGoogle Scholar

  • Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving—More than reasoning? Intelligence, 40(1), 1–14. 10.1016/j.intell.2011.11.003 First citation in articleCrossrefGoogle Scholar

  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. 10.1016/j.dr.2006.12.001 First citation in articleCrossrefGoogle Scholar