Skip to main content
Published Online:https://doi.org/10.1027/2151-2604/a000266

Abstract. Novel data collection methods and analysis algorithms developed in the field of neuroergonomics have opened new possibilities for research in education. Psychophysiological data can characterize the cognitive and emotional dimensions of engagement. This paper aims to describe the application of this research methodology to synchronously measure emotional and cognitive engagement during learning tasks.

References

  • Allaire-Duquette, G., Charland, P. & Riopel, M. (2014). At the very root of the development of interest: using human body contexts to improve women’s emotional engagement in introductory physics. European Journal of Physics Education, 5, 31–48. doi: 10.20308/ejpe.93516 First citation in articleCrossrefGoogle Scholar

  • Berka, C., Levendowski, D. J., Cvetinovic, M. M., Petrovic, M. M., Davis, G., Lumicao, M. N., … Olmstead, R. (2004). Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. International Journal of Human-Computer Interaction, 17, 151–170. doi: 10.1207/s15327590ijhc1702_3 First citation in articleCrossrefGoogle Scholar

  • Boucsein, W. (2012). Electrodermal activity. New York, NY: Springer. First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M. & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25, 49–59. doi: 10.1016/0005-7916(94)90063-9 First citation in articleCrossrefGoogle Scholar

  • Charland, P., Léger, P.-M., Sénécal, F., Courtemanche, F., Mercier, J., Skelling, Y. & Labonté-Lemoyne, E. (2015). Assessing the multiple dimensions of engagement to characterize learning: A neurophysiological perspective. Journal of Visualized Experiments, 101, 1–8. doi: 10.3791/52627 First citation in articleCrossrefGoogle Scholar

  • Cox, D. J., Kovatchev, B. P., Morris, J. B., Phillips, C., Hill, R. J. & Merkel, L. (1998). Electroencephalographic and psychometric differences between boys with and without attention-deficit/hyperactivity disorder (ADHD): A pilot study. Applied Psychophysiology and Biofeedback Journal, 23, 179–188. doi: 10.1023/A:1022247405278 First citation in articleCrossrefGoogle Scholar

  • Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. The International Journal of Neuroscience, 39, 7l–89. doi: 10.3109/00207458808985694 First citation in articleCrossrefGoogle Scholar

  • Fredricks, J. A., Blumenfeld, P. C. & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74, 59–109. doi: 10.3102/00346543074001059 First citation in articleCrossrefGoogle Scholar

  • Freeman, F. G., Mikulka, P. J., Scerbo, M. W. & Scott, L. (2004). An evaluation of an adaptive automation system using a cognitive vigilance task. Biological Psychology, 67, 283–297. doi: 10.1016/j.biopsycho.2004.01.002 First citation in articleCrossrefGoogle Scholar

  • Goldberg, J. H. (2014). Measuring software screen complexity: Relating eye tracking, emotional valence, and subjective ratings. International Journal of Human-Computer Interaction, 30, 518–532. doi: 10.1080/10447318.2014.906156 First citation in articleCrossrefGoogle Scholar

  • Johnson, R. R., Popovic, D. P., Olmstead, R. E., Stikic, M., Levendowski, D. J. & Berka, C. (2011). Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model. Biological Psychology, 87, 241–250. doi: 10.1016/j.biopsycho.2011.03.003 First citation in articleCrossrefGoogle Scholar

  • Léger, P. M., Davis, F. D., Cronan, T. P. & Perret, J. (2014). Neurophysiological correlates of cognitive absorption in an enactive training context. Computers in Human Behavior, 34, 273–283. doi: 10.1016/j.chb.2014.02.011 First citation in articleCrossrefGoogle Scholar

  • Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self-Regulation, 16, 201–225. doi: 10.1007/BF01000016 First citation in articleCrossrefGoogle Scholar

  • Mikulka, P. J., Freeman, F. G. & Scerbo, M. W. (2002). The effects of a biocybernetic system on the vigilance decrement. Human Factors, 44, 654–664. doi: 10.1518/0018720024496944 First citation in articleCrossrefGoogle Scholar

  • Pope, A. T., Bogart, E. H. & Bartolome, D. S. (1995). Biocybernetic system evaluation indices of operator engagement in automated task. Biological Psychology, 40, 187–195. doi: 10.1016/0301-0511(95)05116-3 First citation in articleCrossrefGoogle Scholar

  • Sénécal, S., Fredette, M., Léger, P. M., Courtemanche, F. & Riedl, R. (2015). Consumers’ cognitive lock-in on websites: Evidence from a neurophysiological study. Journal of Internet Commerce, 14, 277–293. doi: 10.1080/15332861.2015.1028249 First citation in articleCrossrefGoogle Scholar

  • Streitberg, B., Rohmel, J., Herrmann, W. M. & Kubicki, S. (1987). COMSTAT Rule for vigilance classification based on spontaneous EEG activity. Neuropsychobiology, 17, 105–117. doi: 10.1159/000118347 First citation in articleCrossrefGoogle Scholar

  • Zhang, D., Zhou, L., Briggs, R. O. & Nunamaker, J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information and Management, 43, 15–27. doi: 10.1016/j.im.2005.01.004 First citation in articleCrossrefGoogle Scholar