Skip to main content
Published Online:https://doi.org/10.1024//1010-0652.13.12.60

Zusammenfassung: Übung bzw. Training reduziert im allgemeinen die Bearbeitungszeit zur Lösung eines Problems. Diese Zeiteinsparung wird oft auf eine Verringerung kontrollierter Prozesse zugunsten automatisierter Teilprozesse zurückgeführt. Doch welche Prozeßeigenschaften zeigen einen solchen Lerneffekt an? Einen möglichen Weg zur Beantwortung dieser Frage sehen wir in der Analyse prozeßbegleitender funktionaler Kooperationen zwischen Hirnregionen und ihrer Veränderung durch Übung. In 2 EEG-Studien wird die Annahme getroffen, daß sich hoher kognitiver Aufwand für Kontroll- und Steuerprozesse im Arbeitsgedächtnis in besonders starken Synchronisationen zwischen Regionen des Frontal- und des Parietalbereiches widerspiegelt. Die Erwartung, daß eine Aufwandsreduktion durch Übung mit einer Verringerung solcher Synchronisationen einhergeht, ließ sich auf der Basis einer EEG-Kohärenzanalyse empirisch bestätigen. Gleichzeitig mit einer Verringerung der Stärke dieser interregionalen Synchronisation wurde eine Erhöhung der Stärke der lokalen Synchronisation in parietalen Bereichen gefunden. Das könnte dahingehend interpretiert werden, daß der durch Übung teilweise automatisierte Lösungsprozeß mehr und mehr in parietalen Regionen stattfindet und damit die Exekutive von ihrer Kontrollfunktion entlastet wird.


Summary: Repeated practice on cognitive tasks is known to reduce the processing time required for successful task completion, and this gain in processing speed has often been attributed to task performance becoming automated during the course of practice. It is unclear, however, what processing parameters indicate changes from controlled to more automatic processing. One promising way to answer this question is to look for functional couplings of subsystems during task performance before and after practice. It was hypothesized that the mental effort for controlled processes in working memory will be indicated by strong synchronization between frontal and parietal brain areas, and that it will be reduced over the course of practice. In 2 experiments, EEG coherence was used to assess synchronization. As expected, there was a decrease of interregional synchronization between frontal and parietal areas as a function of practica. Against this, specific parietal areas exhibited strong synchronization at the end of practice. This suggests that the automatization of task performance over the course of practice involves a shift of processing from frontal to posterior cortical areas, increasingly releasing the central executive from its controlling function.

Literatur

  • Anderson, J. R.(1982). Acquisition of cognitive skills. Cambridge, MA: Harvard University Press. First citation in articleCrossrefGoogle Scholar

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., Noll, D. C.(1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49– 62 First citation in articleCrossrefGoogle Scholar

  • Casey, B. J., Cohen, J. D., Trainor, R. J., Nah, G. E., Nystrom, L. E., Orendi, J. L., Schubert, A. B., Noll, D. C.(1996). A functional MRI study of hierarchical cortical activation as a function of task complexity. NeuroImage, 3, 536– 536 First citation in articleCrossrefGoogle Scholar

  • Classen, J., Gerloff, C., Honda, M., Hallett, M.(1998). Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. Journal of Neurophysiology, 79, 1567– 1573 First citation in articleCrossrefGoogle Scholar

  • Cohen, J. D., Perlstein, W. H., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., Smith, E. E.(1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604– 608 First citation in articleCrossrefGoogle Scholar

  • D'Esposito, M., Ballard, D., Aguirre, G. K., Zarahn, E.(1998). Human prefrontal cortex is not specific for working memory: A functional MRI study. NeuroImage, 8, 274– 282 First citation in articleCrossrefGoogle Scholar

  • D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., Grossman, M.(1995). The neural basis of the central executive system of working memory. Nature, 378, 279– 281 First citation in articleGoogle Scholar

  • Engel, A. K., Brecht, M., Fries, P., Singer, W.(1998). Zeitliche Bindung und der Aufbau visueller Objektrepräsentationen. In U. Kotkamp & W. Krause (Hrsg.), Intelligente Informationsverarbeitung (S. 193-200). Wiesbaden: Universitätsverlag. First citation in articleCrossrefGoogle Scholar

  • Frith, C., Dolan, R.(1996). The role of the prefrontal cortex in higher cognitive functions. Cognitive Brain Research, 5, 175– 181 First citation in articleCrossrefGoogle Scholar

  • Garner, W. R., Clement, D. E.(1963). Goodness of pattern and pattern uncertainty. Journal of Verbal Learning and Verbal Behavior, 2, 446– 452 First citation in articleCrossrefGoogle Scholar

  • Goertz, R.(1997). Ereigniskorrelierte Kohärenz im EEG als Methode zur Untersuchung transienter funktionaler Kopplung. Berlin: Logos. First citation in articleGoogle Scholar

  • Hagendorf, H., Sa, B.(1996). Coordination processes of mental transformations of patterns: Practice and transfer effects. European Journal of Cognitive Psychology, 8, 295– 317 First citation in articleCrossrefGoogle Scholar

  • Kammer, T., Bellemann, M. E., Guckel, F., Brix, G., Gass, A., Schlemmer, H., Spitzer, M.(1997). Functional MR imaging of the prefrontal cortex: Specific activation in a working memory task. Magnetic Resonance Imaging, 15, 879– 889 First citation in articleCrossrefGoogle Scholar

  • Klimesch, W., Schimke, H., Schwaiger, J.(1994). Episodic and semantic memory: An analysis in the theta and alpha band. Electroencephalography and Clinical Neurophysiology, 91, 428– 441 First citation in articleCrossrefGoogle Scholar

  • Klix, F.(1992). Die Natur des Verstandes. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Kluwe, R. H.(1997). Intentionale Steuerung kognitiver Aktivität. Kognitionswissenschaft, 6, 53– 69 First citation in articleCrossrefGoogle Scholar

  • Krause, W.(1992). Zur Messung geistiger Leistungen: Eine alte Idee und ein neuer Ansatz. Zeitschrift für experimentelle und angewandte Psychologie, 1, 114– 128 First citation in articleGoogle Scholar

  • Krause, W., Gibbons, H., Schack, B.(1998). Concept activation and coordination of activation procedure require two different networks. NeuroReport, 9, 1649– 1653 First citation in articleGoogle Scholar

  • Krause, W., Schack, B., Gibbons, H., Kriese, B.(1997). Über die Unterscheidbarkeit begrifflicher und bildhaftanschaulicher Repräsentationen bei elementaren Denkanforderungen. Zeitschrift für Psychologie, 205, 169– 203 First citation in articleGoogle Scholar

  • Malsburg, C. von der(1994). The correlation theory of brain function. In E. Domany, J. L. van Hemmen & K. Schulten (Eds.), Models of Neural Networks II (pp. 95-119). Berlin: Springer-Verlag (Nachdruck eines 1981 erschienenen Internal Reports des Max-Planck-Instituts für Biophysikalische Chemie in Göttingen). First citation in articleGoogle Scholar

  • Manoach, D. S., Schlang, G., Siewert, B., Darby, D. G., Bly, B. M., Benfield, A., Edelman, R. R., Warach, S.(1997). Prefrontal cortex fMRI signal changes are correlated with working memory load. NeuroReport, 8, 545– 549 First citation in articleGoogle Scholar

  • Mayr, U., Kliegl, R., Krampe, R. T.(1996). Sequential and coordinative processing dynamics in figural transformations across the life span. Cognition, 59, 61– 90 First citation in articleCrossrefGoogle Scholar

  • Nunez, P.(1995). Neocortical dynamics and human EEG rhythms. New York: Oxford University Press. First citation in articleGoogle Scholar

  • Nunez, P. L., Srinivasan, R., Wijesinghe, R. S., Westdorp, A. F., Tucker, D. M., Silberstein, R. B., Cadusch, P. J.(1997). EEG Coherency I: Statistics, Reference Electrode, Volume Conduction, Laplacians, Cortical Imaging, and Interpretation at Multiple Scales. Electroencephalography and Clinical Neurophysiology, 103, 499– 515 First citation in articleCrossrefGoogle Scholar

  • Petsche, H.(1995). Die flirrende Welt der Aufmerksamkeit: Zur Neurophysiologie kognitiver Prozesse. Zeitschrift EEG - MEG, 26, 1– 18 First citation in articleGoogle Scholar

  • Petsche, H.(1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. International Journal of Psychphysiology, 24, 145– 160 First citation in articleCrossrefGoogle Scholar

  • Petsche, H.(1997). Der Beitrag des Spontan-EEG zum Verständnis kognitiver Funktionen. Wiener Klinische Wochenschrift, 9, 327– 341 First citation in articleGoogle Scholar

  • Petsche, H., Etlinger, S. C.(1998). EEG aspects of cognitive processes: A contribution to the Proteus-like nature of consciousness. International Journal of Psychophysiology, 33, 199– 212 First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G., Stancak, A. J., Edlinger, G.(1997). On the existence of different types of central beta rhythms below 30 Hz. Electroencephalography and Clinical Neurophysiology, 102, 316– 325 First citation in articleCrossrefGoogle Scholar

  • Posner, M. I., Raichle, M. E.(1994). Bilder des Geistes. Heidelberg: Spektrum. First citation in articleGoogle Scholar

  • Potts, G. R.(1975). Bringing order to cognitive structures. In F. Restle, R. M. Shiffrin, N. J. Castellan, H. R. Lindman & D. B. Pisoni (Eds.), Cognitive theory (Vol. 1, pp. 247-270). New York: Wiley. First citation in articleGoogle Scholar

  • Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H.(1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrizen Test. Cognitive Psychology, 33, 43– 63 First citation in articleCrossrefGoogle Scholar

  • Rappelsberger, P., Petsche, H.(1988). Probability mapping: Power and coherence analyses of cognitive processes. Brain Topography, 1, 46– 54 First citation in articleCrossrefGoogle Scholar

  • Rogers, R. D., Monsell, S.(1995). Costs of predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 74, 207– 231 First citation in articleCrossrefGoogle Scholar

  • Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., Stein, A. von(1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences USA, 95, 7092– 7096 First citation in articleGoogle Scholar

  • Schack, B., Krause, W.(1995). Dynamic power and coherence analysis of ultra short-term cognitive processes - a methodical study. Brain Topography, 8, 127– 136 First citation in articleCrossrefGoogle Scholar

  • Schack, B., Grieszbach, G., Arnold, M., Bolten, J.(1995). Dynamic cross-spectral analysis of biological signals by means of bivariate ARMA processes with time-dependent coefficients. Medical & Biological Engineering & Computing, 33, 605– 610 First citation in articleCrossrefGoogle Scholar

  • Schack, B., Grieszbach, G., Krause, W. (in print) The sensitivity of instantaneous coherence for considering elementary comparison processing. International Journal of Psychophysiology, First citation in articleGoogle Scholar

  • Schneider, W., Shiffrin, R. M.(1977). Controlled and automatic human information pocessing: I. Detection, search, and attention. Psychological Review, 84, 1– 66 First citation in articleCrossrefGoogle Scholar

  • Singer, W., Gray, C. M.(1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555– 586 First citation in articleCrossrefGoogle Scholar

  • Smith, E. E., Jonides, J.(1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5– 42 First citation in articleCrossrefGoogle Scholar

  • Sommerfeld, E.(1994). Kognitive Strukturen. Münster: Waxmann. First citation in articleGoogle Scholar

  • Sommerfeld, E., Krause, W.(1998). The effect of practice in a working memory task on synchronization of specific brain areas. In S. Grondin & I. Lacouture (Eds.), Fechner Day 98. Proceedings Fourteenth Annual Meeting of the International Society of Psychophysics (pp. 355-360). Quebec, Canada: The International Society of Psychophysics. First citation in articleGoogle Scholar

  • Strik, W. K., Lehmann, D.(1987). Data determined window size and base-oriented segmentation of spontaneous EEG map series. Electroencephalography and Clinical Neurophysiology, 87, 169– 174 First citation in articleCrossrefGoogle Scholar

  • Sternberg, S.(1969). The discovery of processing stages: Extension of Donder's method. Acta Psychologia, 30, 276– 315 First citation in articleCrossrefGoogle Scholar

  • Tremblay, M., Lacroix, D., Chaput, Y., Fraile, V., Lamer, R., Albert, J.-M.(1994). Brain activation with a maze test: An EEG coherence analysis study in healthy subjects. NeuroReport, 5, 2449– 2453 First citation in articleGoogle Scholar

  • Weiss, S., Rappelsberger, P.(1996). EEG coherence within the 13-18 Hz band as a correlate of a distinct lexical organisation of concrete and abstract nouns in humans. Neuroscience Letters, 209, 17– 20 First citation in articleCrossrefGoogle Scholar

  • Weiss, S., Rappelsberger, P.(1998). Left frontal EEG coherence reflects modality independent language processes. Brain Topography, 11, 33– 42 First citation in articleCrossrefGoogle Scholar