Skip to main content
Originalia

Zeitliche Integration im auditiven System bei Erwachsenen mit konstitutioneller Dyslexie

Published Online:https://doi.org/10.1024//1016-264X.14.2.99

Zusammenfassung: Unterschiede in der zeitlichen Integration bei präattentiver auditiver Reizverarbeitung wurden bei 12 erwachsenen dyslektischen Lesern und einer Kontrollgruppe untersucht. Dazu wurde die Mismatch-Negativität (MMN), eine Komponente des auditiven ereigniskorrelierten Hirnpotenzials, die die automatische Entdeckung von Veränderungen der akustischen Umgebung reflektiert, verwendet. Die von gelegentlich auftretenden Tonauslassungen in einer ansonsten regelmäßigen Tonfolge evozierte MMN wurde genutzt, um zeitliche Integrationsmechanismen im auditiven System zu untersuchen. In Experiment 1 wurden in einer ansonsten regelmäßigen Tonfolge gelegentlich Töne ausgelassen, wobei sich die präsentierten Blöcke in ihrem Interstimulus-Intervall unterschieden (120ms, 150ms, 180ms, 200ms, 220ms). In Experiment 2 wurde die Genauigkeit des auditiven Integrationsmechanismus untersucht. Es ergaben sich keine Gruppenunterschiede in Amplitude, Latenz oder Topographie für die durch Tonauslassungen oder Tonabweichungen evozierte MMN. Diese Ergebnisse werden im Hinblick auf theoretische Vorstellungen, die von einem zeitlichen Verarbeitungsdefizit bei konstitutioneller Dyslexie ausgehen, diskutiert.


Temporal Integration in the Auditory System of Adult Dyslexic Readers

Abstract: We studied differences in temporal integration in preattentive auditory processing in a group of 12 adult developmental dyslexics and 12 normal readers by use of the mismatch negativity component of the auditory event-related brain potential (MMN). The MMN reflects the automatic detection of sound change. MMN to occasionally omitted sounds in a tone series can be used to investigate the time course of temporal integration in the auditory system. In experiment 1, occasionally omitted sounds in an otherwise regular tone series were presented in blocks with different inter-stimulus-intervals (120ms, 150ms, 180ms, 200ms, 220ms). Experiment 2 addressed the precision of the temporal integration mechanism. No group differences emerged for amplitude, latency or topography of the MMN evoked by tone omissions or tone deviations. These results are discussed with respect to current theories of temporal processing deficits in developmental dyslexia.

References

  • Aschenbrenner, S., Tucha, O., Lankge, K. (2001). Regensburger Wortflüssigkeitstest (RWT).. Göttingen: Hogrefe. . First citation in articleGoogle Scholar

  • Baldeweg, T., Richardson, A., Watkins, S., Foale, C., Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials.. Annals of Neurology, 45, 495–503. First citation in articleCrossrefGoogle Scholar

  • Breitenbach, E., Lenhard, W. (2001). Aktuelle Forschung auf der Suche nach neurobiologischen Korrelaten der Lese-Rechtschreib-Störung.. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 29, 167–177. First citation in articleLinkGoogle Scholar

  • Brickenkamp, R. (1994). d2 Aufmerksamkeits-Belastungs-Test.. Bern: Huber. . First citation in articleGoogle Scholar

  • British Dyslexia Association (1995). The dyslexia handbook 1995... First citation in articleGoogle Scholar

  • Brosnan, M., Demetre, J., Hamill, S., Robson, K., Shepherd, H., Cody, G. (2002). Executive functioning in adults and children with developmental dyslexia.. Neuropsychologia, 40, 2144–2155. First citation in articleCrossrefGoogle Scholar

  • Bruck, M. (1990). Word recognition skills of adults with childhood diagnoses of dyslexia.. Developmental Psychology, 26, 439–454. First citation in articleCrossrefGoogle Scholar

  • Brunswick, N., McCrory, E., Price, C.J., Frith, C.D., Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz?. Brain, 122, 1901–1917. First citation in articleCrossrefGoogle Scholar

  • Cestnick, L., Jerger, J. (2000). Auditory temporal processing and lexical/nonlexical reading in developmental dyslexics.. Journal of the American Academy of Audiology, 11, 501–513. First citation in articleGoogle Scholar

  • Cowan, N. (1995). Sensory memory and its role in information processing.. In G. Karmos, M. Mòlnar, V. Csèpe, I. Czigler & J.E. Desmedt (Hrsg.), Perspectives of event-related potentials research (pp.21-31. EEG supplement 40). New York: Elsevier. . First citation in articleGoogle Scholar

  • Cutting, J.E., Pisoni, D.B. (1978). An information processing approach to speech perception.. In J.F. Kavanagh & W. Strange (Hrsg.), Speech and language in the laboratory, school, and clinic (pp.38-72). Cambridge: MIT press. . First citation in articleGoogle Scholar

  • Decker, S. (1989). Cognitive processing rates among disabled and normal reading young adults: A nine year follow-up study.. Reading and Writing: An interdisciplinary Journal, 2, 123–134. First citation in articleCrossrefGoogle Scholar

  • Deutsche Gesellschaft für Personalwesen (1974). Rechtschreibungstest (R-T).. Göttingen: Hogrefe. . First citation in articleGoogle Scholar

  • Dilling, H., Mombour, W., Schmidt, M.H. (1991). International Classification of metal diseases. ICD-10.. Bern: Huber. . First citation in articleGoogle Scholar

  • Farmer, M.E., Klein, R. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review.. Psychonomics Bulletin and Review, 2, 460–493. First citation in articleCrossrefGoogle Scholar

  • Felton, R.H., Naylor, C.E., Wood, F.B. (1990). Neuropsychological profile of adult dyslexics.. Brain and Language, 39, 485–497. First citation in articleCrossrefGoogle Scholar

  • Grigorenko, E.L. (2001). Developmental dyslexia: An update on genes, brains and environments.. Journal of Child Psychology and Psychiatry, 42, 91–125. First citation in articleCrossrefGoogle Scholar

  • Gustafson, S., Samuelsson, S. (1999). Intelligence and dyslexia: Implications for diagnosis and intervention.. Scandinavian Journal of Psychology, 40, 127–134. First citation in articleCrossrefGoogle Scholar

  • Habib, M. (2000). The neurological basis of developmental dyslexia: An overview and working hypothesis.. Brain, 123, 2373–2399. First citation in articleCrossrefGoogle Scholar

  • Haffner, J., Pfüller, U., Resch, F., Strehlow, U., Zerahn-Hartung, C. (1995). Neue Normen für das Diktat C “Moselfahrt” aus dem Rechtschreibungstest R-T von K. Althoff, S. Greif, G. Henning, R. Hess und J. Röber.. Abt. für Kinder- und Jugendpsychiatrie der Universität Heidelberg. . First citation in articleGoogle Scholar

  • Hari, R., Hamalainen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., Alho, K., Näätänen, R., Sams, M. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man.. Neuroscience Letters, 50, 127–132. First citation in articleCrossrefGoogle Scholar

  • Hari, R., Kiesilä, P. (1996). Deficit of temporal auditory processing in dyslexic adults.. Neuroscience Letters, 205, 138–140. First citation in articleCrossrefGoogle Scholar

  • Hautus, M.J., Setchell, G.J., Waldie, K.E., Kirk, I.J. (2003). Age-related improvements in auditory temporal resolution in reading-impaired children.. Dyslexia, 9, 37–45. First citation in articleCrossrefGoogle Scholar

  • Helland, T., Asbjörnsen, A. (2000). Executive functions in dyslexia.. Neuropsychology, Development, and Cognition, Section C, Child Neuropsychology, 6,fs24 D, 37–48. First citation in articleGoogle Scholar

  • Huynh, H., Feldt, L.A. (1980). Conditions under which mean square ratios in repeated measures designs have exact F-distributions.. Journal of the American Statistical Association, 65, 1582–1589. First citation in articleCrossrefGoogle Scholar

  • Jasper, H.H. (1958). The ten-twenty electrode system of the international federation.. Electroencephalography and Clinical Neurophysiology, 20, 371–375. First citation in articleGoogle Scholar

  • Katusic, S.K., Colligan, R.C., Barbaresi, W.J., Schaid, D.J., Jacobsen, S.J. (2001). Incidence of reading disability in a population-based birth cohort, 1976- 1982, Rochester, MN.. Mayo Clinics Proceedings, 76, 1081–1092. First citation in articleCrossrefGoogle Scholar

  • Kitz, W.R., Tarver, S.G. (1989). Comparison of dyslexic and nondyslexic adults on decoding and phonemic awareness tasks.. Annals of Dyslexia, 39, 196– 205. First citation in articleCrossrefGoogle Scholar

  • Kujala, T., Belitz, S., Tervaniemi, M., Näätänen, R. (2003). Auditory sensory memory disorder in dyslexic adults as indexed by the mismatch negativity.. European Journal of Neuroscience, 17, 1323–1327. First citation in articleCrossrefGoogle Scholar

  • Kujala, T., Myllyviita, K., Tervaniemi, M., Alho, K., Kallio, J., Näätänen, R. (2000). Basic auditory dysfunction in dyslexia as demonstrated by brain activity measurements.. Psychophysiology, 37, 262–266. First citation in articleCrossrefGoogle Scholar

  • Kujala, T., Näätänen, R. (2001). The mismatch negativity in evaluating central auditory dysfunction in dyslexia.. Neuroscience and Biobehavioral Reviews, 25, 535–543. First citation in articleCrossrefGoogle Scholar

  • Linder, M., Grissemann, H. (1980). Züricher Lesetest (4. umgearbeitete Auflage).. Bern: Huber. . First citation in articleGoogle Scholar

  • Loveless, N., Koivikko, H. (2000). Sluggish auditory processing in dyslexics is not due to persistence in sensory memory.. Neuroreport, 9, 1903–1906. First citation in articleCrossrefGoogle Scholar

  • McCarthy, G., Wood, C. (1985). Scalp distribution of event-related potentials: an ambiguity associated with analysis of variance models.. Electroencephalography and Clinical Neurophysiology, 62, 203–208. First citation in articleCrossrefGoogle Scholar

  • Münte, T.F., Urbach, T.P., Düzel, E., Kutas, M. (2000). Event-related brain potentials in the study of human cognition and neuropsychology.. In F. Boller, J. Grafman & G. Rizolatti (Eds.), Handbook of neuropsychology (pp.137-235). Amsterdam: Elsevier. . First citation in articleGoogle Scholar

  • Näätänen, R. (1992). Attention and brain function.. Hillsdale, NJ: Erlbaum. . First citation in articleGoogle Scholar

  • Näätänen, R., Paavilainen, P., Reinikainen, K. (1989). Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man?. Neuroscience Letters, 15, 347–352. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R., Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience.. Psychological Bulletin, 125, 826–859. First citation in articleCrossrefGoogle Scholar

  • Nicolson, R.I., Fawcett, A.J. (2001). Developmental dyslexia: The cerebellar deficit hypothesis.. Trends in Neurosciences, 24, 508–511. First citation in articleCrossrefGoogle Scholar

  • Paulesu, E., Demonet, J.F., Fazio, F., McCrory, E., Chanoine, V., Brunswick, N., Cappa, S.F., Cossu, G., Habib, M., Frith, C.D., Frith, U. (2001). Dyslexia: Cultural diversity and biological unity.. Science, 291, 2165–2167. First citation in articleCrossrefGoogle Scholar

  • Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R.S., Frith, C.D. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning.. Brain, 119, 143–157. First citation in articleCrossrefGoogle Scholar

  • Picton, T.W., Alain, C., Otten, L., Ritter, W., Achim, A. (2001). Mismatch negativity: Different water in the same river.. Audiology and Neurootology, 5, 111–139. First citation in articleCrossrefGoogle Scholar

  • Rumsey, J.M., Nace, K., Donohue, B., Wise, D., Maisog, J.M., Andreason, P. (1997). A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men.. Archives of Neurology, 54, 562–573. First citation in articleCrossrefGoogle Scholar

  • Rüsseler, J., Altenmüller, E., Nager, W., Kohlmetz, K., Münte, T.F. (2001). Event-related brain potentials to sound omissions differ in musicians and non-musicians.. Neuroscience Letters, 308, 33–36. First citation in articleCrossrefGoogle Scholar

  • Rüsseler, J., Johannes, S., Kowalczuk, J., Wieringa, B.M., Münte, T.F. (2003). Developmental dyslexics show altered allocation of attention in visual classification tasks.. Acta Neurologica Scandinavica, 107, 22–30. First citation in articleCrossrefGoogle Scholar

  • Rüsseler, J., Kowalczuk, J., Johannes, S., Wieringa, B.M., Münte, T.F. (2002). Cognitive brain potentials to novel acoustic stimuli in adult dyslexic readers.. Dyslexia, 8, 125–142. First citation in articleCrossrefGoogle Scholar

  • Schröger, E. (1995). On the detection of auditory deviants: A pre-attentive activation model.. Psychophysiology, 34, 245–257. First citation in articleCrossrefGoogle Scholar

  • Schröger, E., Wolff, C. (1996). Mismatch response of the human brain to changes in sound location.. Neuroreport, 7, 3005–3008. First citation in articleCrossrefGoogle Scholar

  • Shaywitz, S.E. (1998). Dyslexia.. New England Journal of Medicine, 338, 307–312. First citation in articleCrossrefGoogle Scholar

  • Shaywitz, S.E., Fletcher, J.M., Holahan, J.M., Shneider, A.E., Marchione, K.E., Stuebing, K.K., Francis, D.J., Pugh, K.R., Shaywitz, B.A. (1999). Persistence of dyslexia: The Connecticut longitudinal study at adolescence.. Pediatrics, 104, 1351–1359. First citation in articleCrossrefGoogle Scholar

  • Shaywitz, S.E., Shaywitz, B.A., Fletcher, J.M., Escobar, M.D. (1990). Prevalence of reading disability in boys and girls: Results of the Connecticut longitudinal study.. Journal of the American Medical Association, 264, 998–1002. First citation in articleCrossrefGoogle Scholar

  • Schulte-Körne, G., Deimel, W., Bartling, J., Remschmidt, H. (1998a). Auditory processing and dyslexia: Evidence for a specific speech processing deficit.. Neuroreport, 9, 337–340. First citation in articleCrossrefGoogle Scholar

  • Schulte-Körne, G., Deimel, W., Bartling, J., Remschmidt, H. (1998b). Role of auditory temporal processing for reading and spelling disability.. Perceptual and Motor Skills, 86, 1043–1047. First citation in articleCrossrefGoogle Scholar

  • Schulte-Körne, G., Deimel, W., Bartling, J., Remschmidt, H. (2001). Speech perception deficit in dyslexic adults as measured by mismatch negativity (MMN).. International Journal of Psychophysiology, 40, 77–87. First citation in articleCrossrefGoogle Scholar

  • Stein, J. (2001). The magnocellular theory of developmental dyslexia.. Dyslexia, 7, 12–36. First citation in articleCrossrefGoogle Scholar

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children.. Brain and Language, 9, 182–198. First citation in articleCrossrefGoogle Scholar

  • Tallal, P., Miller, S., Bedi, G., Byma, G., Wang, X., Nagarajan, S., Schreiner, C., Jenkins, W., Merzenich, M.M. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech.. Science, 271, 81–84. First citation in articleCrossrefGoogle Scholar

  • Tallal, P., Miller, S., Fitch, R. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing.. Annals of the New York Academy of Sciences, 682, 27–47. First citation in articleCrossrefGoogle Scholar

  • Temple, E., Deutsch, G.K., Poldrack, R.A., Miller, S.L., Tallal, P., Merzenich, M.M., Gabrieli, J.D.E. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI.. Proceedings of the National Academy of Sciences USA, 100, 2860–2865. First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M., Saarinen, J., Paavilainen, P., Danilova, N., Näätänen, R., (1994). Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity.. Biological Psychology, 38, 157– 167. First citation in articleCrossrefGoogle Scholar

  • Tewes, U. (1991). Hamburg-Wechsler Intelligenztest für Erwachsene (Revision 1991, HAWIE-R).. Bern: Huber. . First citation in articleGoogle Scholar

  • Van Ingelghem, M., van Wieringen, A., Wouters, J., Vandenbussche, E., Onghena, P., Ghesqiere, P. (2001). Psychophysical evidence for a general temporal processing deficit in children with dyslexia.. Neuroreport, 12, 3603–3607. First citation in articleCrossrefGoogle Scholar

  • Warnke, A. (1999). Reading and spelling disorders: Clinical features and causes.. European Child and Adolescent Psychiatry, 8 (Supplement 3), III/2–IIIsol;12. First citation in articleGoogle Scholar

  • Winkler, I., Näätänen, R. (1992). Event-related potentials in auditory backward inhibition masking: A new way to study the neurophysiological basis of sensory memory in humans.. Neuroscience Letters, 140, 239–242. First citation in articleCrossrefGoogle Scholar

  • Yabe, H., Koyama, S., Kakigi, R., Gunji, A., Tervaniemi, M., Sato, Y., Kaneko, S. (2001a). Automatic discriminative sensitivity inside temporal window of sensory memory as a function of time.. Cognitive Brain Research, 12, 39–48. First citation in articleCrossrefGoogle Scholar

  • Yabe, H., Sato, S., Sutoh, T., Hiruma, T., Shinozaki, N., Nashida, T., Saito, F., Kaneko, S. (1999). The duration of integrating window in auditory sensory memory.. In C. Barbar, G.G. Celesia, I. Hashimoto & R. Kakigi (Hrsg.), Functional neuroscience: Evoked potentials and magnetic fields (pp.166-169, EEG supplement 40). Amsterdam: Elsevier. . First citation in articleGoogle Scholar

  • Yabe, H., Tervaniemi, M., Reinikainen, K., Näätänen, R. (1997). Temporal window of integration revealed by MMN to sound omission.. Neuroreport, 8, 1971–1974. First citation in articleCrossrefGoogle Scholar

  • Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., Ilmoniemi, R.J., Näätänen, R. (1998). Temporal window of integration of auditory information in the human brain.. Psychophysiology, 35, 615–619. First citation in articleCrossrefGoogle Scholar

  • Yabe, H., Winkler, I., Czigler, I., Koyama, S., Kakigi, R., Sutoh, T., Hiruma, T., Kaneko, S. (2001b). Organizing sound sequences in the human brain: The interplay of auditory streaming and temporal integration.. Brain Research, 897, 222–227. First citation in articleCrossrefGoogle Scholar

  • Zimmermann, P., Fimm, B. (1994). Testbatterie zur Aufmerksamkeitsprüfung (TAP).. Herzogenrath: Psytest. . First citation in articleGoogle Scholar