Skip to main content
Original Communication

1.25 Dihydroxyvitamin D3 Attenuates Hypertrophy Markers in Cardiomyoblast H9c2 Cells: Evaluation of Sirtuin3 mRNA and Protein Level

Published Online:https://doi.org/10.1024/0300-9831/a000469

Abstract.Background: The cellular and molecular mechanisms of cardioprotective effects of Vitamin D are poorly understood. Given the essential role of sirtuin-3 (SIRT3) as an endogenous negative regulator of cardiac hypertrophy, this study was designed to investigate the effect of 1, 25-dihydroxyvitamin D3 (calcitriol) on hypertrophy markers and SIRT3 mRNA and protein levels following angiotensin II induced - hypertrophy in cardiomyoblast H9c2 cells. Methods: Rat cardiomyoblast H9c2 cells were treated for 48 hr with angiotensin II alone (Ang group) or in combination with 1, 10 and 100 nM of calcitriol (C + Ang groups). Intact cells served as control (Ctl). The cell area was measured using methylene blue staining. Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and SIRT3 transcription levels were measured by real time RT-PCR. SIRT3 protein expression was evaluated using western blot technique. Results: The results showed that in Ang group cell size was increase by 128.4 ± 15% (P < 0.001 vs. Ctl) whereas in C100 + Ang group it was increased by 21.3 ± 6% (P < 0.001 vs. Ang group). Calcitriol pretreatment decreased ANP mRNA level significantly (P < 0.05) in comparison with Ang group (Ang: 75.5 ± 15%, C100 + Ang: 19.2 ± 9%). There were no significant differences between Ang group and cells pretreated with 1 and 10 nM of calcitriol. SIRT3 at mRNA and protein levels did not change significantly among the experimental groups. Conclusions: In conclusion, pretreatment with calcitriol (100 nM) prevents Ang II-induced hypertrophy in cardiomyoblast H9c2 cells. This probably occurs through other pathways except SIRT3 upregulation.

References

  • 1 Gupta, S., Das, B., & Sen, S. (2007) Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid. Redox. Signal. 9, 623–652. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Holtwick, R., van Eickels, M., Skryabin, B.V., Baba, H.A., Bubikat, A., Begrow, F., et al. (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J. Clin. Invest. 111, 1399–1407. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Chen, C.J., Fu, Y.C., Yu, W., & Wang, W. (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem. Biophys. Res. Commun. 430, 798–803. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Pillai, V.B., Sundaresan, N.R., Jeevanandam, V., & Gupta, M.P. (2010) Mitochondrial SIRT3 and heart disease. Cardiovasc. Res. 88, 250–256. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A., & Gupta, M.P. (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758–2771. First citation in articleMedlineGoogle Scholar

  • 6 Chen, Y., Zhang, J., Lin, Y., Lei, Q., Guan, K.L., Zhao, S., et al. (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12, 534–541. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Wong, M.S., Delansorne, R., Man, R.Y., Svenningsen, P., & Vanhoutte, P.M. (2010) Chronic treatment with vitamin D lowers arterial blood pressure and reduces endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am. J. Physiol. Heart. Circ. Physiol. 299, H1226–H1234. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Wu-Wong, J.R. (2011) Vitamin D therapy in cardiac hypertrophy and heart failure. Curr. Pharm. Des. 17, 1794–1807. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Bodyak, N., Ayus, J.C., Achinger, S., Shivalingappa, V., Ke, Q., Chen, Y.S., et al. (2007) Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc. Natl. Acad. Sci. U S A. 104, 16810–16815. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Mozos, I., & Marginean, O. (2015) Links between vitamin D deficiency and cardiovascular diseases. Biomed. Res. Int. 2015, 109275. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Fetahu, I.S., Hobaus, J., & Kallay, E. (2014) Vitamin D and the epigenome. Front. Physiol. 5, 164. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Godman, C.A., Joshi, R., Tierney, B.R., Greenspan, E., Rasmussen, T.P., Wang, H.W., et al. (2008) HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol. Ther. 7, 1570–1580. First citation in articleCrossref MedlineGoogle Scholar

  • 13 An, B.S., Tavera-Mendoza, L.E., Dimitrov, V., Wang, X., Calderon, M.R., Wang, H.J., et al. (2010) Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol. Cell. Biol. 30, 4890–4900. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Chen, T., Liu, J., Li, N., Wang, S., Liu, H., Li, J., et al. (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One. 10, e0118909. First citation in articleMedlineGoogle Scholar

  • 15 Gutte, H., Oxbøl, J., Kristoffersen, U.S., Mortensen, J., & Kjaer, A. (2010) Gene expression of ANP, BNP and ET-1 in the heart of rats during pulmonary embolism. PLoS One. 14, e11111. First citation in articleCrossrefGoogle Scholar

  • 16 Watkins, S.J., Borthwick, G.M., & Arthur, H.M. (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev. Biol. Anim. 47, 125–131. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Hernández, J.S., Barreto‐Torres, G., Kuznetsov, A.V., Khuchua, Z., & Javadov, S. (2014) Crosstalk between AMPK activation and angiotensin II‐induced hypertrophy in cardiomyocytes: the role of mitochondria. J. Cell. Mol. Med. 18, 709–720. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Lu, Y., & Yang, S. (2009) Angiotensin II induces cardiomyocyte hypertrophy probably through histone deacetylases. Tohoku J. Exp. Med. 219, 17–23. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Du, M., Huang, K., Gao, L., Yang, L., Wang, W.S., Wang, B., et al. (2013) Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy. J. Huazhong Univ. Sci. Technolog. Med. Sci. 33, 822–826. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Zong, J., Gao, L., Dai, J., Yang, Z., Xu, M., Fang, Y., et al. (2014) Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy. Herz. 39, 390–396. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Aleksova, A., Belfiore, R., Carriere, C., Kassem, S., LaCarrubba, S., Barbati, G., et al. (2015) Vitamin D deficiency in patients with acute myocardial infarction: an italian single-center study. Int. J. Vitam. Nutr. Res. 85, 23–30. First citation in articleLinkGoogle Scholar

  • 22 Rodríguez-Rodríguez, E., Aparicio, A., Andrés, P., & Ortega, R.M. (2014) Moderate vitamin D deficiency and inflammation related markers in overweight/obese schoolchildren. Int. J. Vitam. Nutr. Res. 84, 98–107. First citation in articleLinkGoogle Scholar

  • 23 Heidari, B., Nargesi, AA., Hafezi-Nejad, N., Sheikhbahaei, S., Pajouhi, A., Nakhjavani, M., et al. (2015) Assessment of serum 25-hydroxy vitamin D improves coronary heart disease risk stratification in patients with type 2 diabetes. Am. Heart J. 170, 573–579.e575. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Pilz, S., Tomaschitz, A., Drechsler, C., Dekker, J.M., & März, W. (2010) Vitamin D deficiency and myocardial diseases. Mol. Nutr. Food Res. 54, 1103–1113. First citation in articleMedlineGoogle Scholar

  • 25 Kong, J., Kim, G.H., Wei, M., Sun, T., Li, G., Liu, S.Q., et al. (2010) Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats. Am. J. Pathol. 177, 622–631. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Choi, J.H., Ke, Q., Bae, S., Lee, J.Y., Kim, Y.J., Kim, U.K., et al. (2011) Doxercalciferol, a pro-hormone of vitamin D, prevents the development of cardiac hypertrophy in rats. J. Card. Fail. 17, 1051–1058. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Xiang, W., Kong, J., Chen, S., Cao, L.-P., Qiao, G., Zheng, W., et al. (2005) Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am. J. Physiol. Endocrinol. Metab. 288, E125–E132. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Diez, E.R., Altamirano, L.B., García, I.M., Mazzei, L., Prado, N.J., Fornes, M.W., et al. (2015) Heart remodeling and ischemia–reperfusion arrhythmias linked to myocardial vitamin D receptors deficiency in obstructive nephropathy are reversed by paricalcitol. J. Cardiovasc. Pharmacol. Ther. 20, 211–220. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Nibbelink, K.A., Tishkoff, D.X., Hershey, S.D., Rahman, A., & Simpson, R.U. (2007) 1, 25 (OH) 2-vitamin D 3 actions on cell proliferation, size, gene expression, and receptor localization, in the HL-1 cardiac myocyte. J. Steroid Biochem. Mol. Biol. 103, 533–537. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Jono, S., Nishizawa, Y., Shioi, A., & Morii, H. (1998) 1, 25-Dihydroxyvitamin D3 increases in vitro vascular calcification by modulating secretion of endogenous parathyroid hormone–related peptide. Circulation. 98, 1302–1306. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Wu, J., Garami, M., Cheng, T., & Gardner, D.G. (1996) 1, 25 (OH) 2 vitamin D3, and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J. Clin. Invest. 97, 1577–1588. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Milani, C., Katayama, M.L.H., de Lyra, E.C., Welsh, J., Campos, L.T., Brentani, M.M., et al. (2013) Transcriptional effects of 1, 25 dihydroxyvitamin D 3 physiological and supra-physiological concentrations in breast cancer organotypic culture. BMC Cancer. 13, 119. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Tudpor, K., Teerapornpuntakit, J., Jantarajit, W., Krishnamra, N., & Charoenphandhu, N. (2008) 1, 25-Dihydroxyvitamin D3 rapidly stimulates the solvent drag-induced paracellular calcium transport in the duodenum of female rats. J. Physiol. Sci. 58, 297–307. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Véniant, M., Ménard, J., Bruneval, P., Morley, S., Gonzales, M.F., & Mullins, J. (1996) Vascular damage without hypertension in transgenic rats expressing prorenin exclusively in the liver. J. Clin. Invest. 98, 1966–1970. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Chen, S., Law, C.S., Grigsby, C.L., Olsen, K., Hong, T.T., Zhang, Y., et al. (2011) Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 124, 1838–1847. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Wang, X., Zhu, Y., Wang, X., Yang, Y., & Cheng, S. (2013) Cardioprotective effect of calcitriol on myocardial injury induced by isoproterenol in rats. J. Cardiovasc. Pharmacol. Ther. 18, 386–391. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Schug, T.T., & Li, X. (2010) Surprising sirtuin crosstalk in the heart. Aging (Albany NY). 31, 129–132. First citation in articleCrossrefGoogle Scholar

  • 38 Pillai, V.B., Sundaresan, N.R., Kim, G., Gupta, M., Rajamohan, S.B., Pillai, J.B., et al. (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 285, 3133–3144. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A., & Gupta, M.P. (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758–2771. First citation in articleMedlineGoogle Scholar

  • 40 Sundaresan, N.R., Samant, S.A., Pillai, V.B., Rajamohan, S.B., & Gupta, M.P. (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol. 28, 6384–6401. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Ni, Y.G., Berenji, K., Wang, N., Oh, M., Sachan, N., Dey, A., et al. (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation. 114, 1159–1168. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Klishadi, M.S., Zarei, F., Hejazian, S.H., Moradi, A., Hemati, M., & Safari, F. (2015) Losartan protects the heart against ischemia reperfusion injury: sirtuin3 involvement. J. Pharm. Pharm. Sci. 18(1), 112–123. First citation in articleCrossref MedlineGoogle Scholar

  • 43 An, B.-S., Tavera-Mendoza, L.E., Dimitrov, V., Wang, X., Calderon, M.R., Wang, H.-J., et al. (2010) Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol. Cell. Biol. 30, 4890–4900. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Adorini, L. (2005) Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell. Imunol. 233, 115–124. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Lavu, S., Boss, O., Elliott, P.J., & Lambert, P.D. (2008) Sirtuins—novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug. Discov. 7, 841–853. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Safari, F., Zarei, F., Shekarforoush, S., Fekri, A., Klishadi, M.S., & Hekmatimoghaddam, S. (2015) Combined 1, 25-Dihydroxy-vitamin D and resveratrol: A novel therapeutic approach to ameliorate ischemia reperfusion-induced myocardial injury. Int. J. Vitam. Nutr. Res. 85, 174–184. First citation in articleLinkGoogle Scholar

  • 47 Klishadi, M.S., Zarei, F., Shekarforoush, S., Safari, F., & Safari, F. (2014) Therapeutic effects of 1, 25-dihydroxyvitamin D and losartan co-administration on myocardial ischemia-reperfusion injury in rats. Physiol. Pharmacol. 18, 156–169. First citation in articleGoogle Scholar

  • 48 Safari, F., Fazeli, M., Dehghani, M., Naghedi, A., Jahanifar, F., & Safari, F. (2015) 1, 25 Dihydroxyvitamin D3 protects the heart against pressure overload-induced hypertrophy without affecting SIRT1 mRNA level. Int. J. Med. Lab. 2, 208–217. First citation in articleGoogle Scholar