Skip to main content
Published Online:https://doi.org/10.1024/0301-1526/a000742

Abstract. Peripheral arterial disease (PAD) management is exceptionally challenging. Despite advances in diagnostic and therapeutic technologies, long-term vessel patency and limb salvage rates are limited. Patients with PAD frequently require extensive workup with noninvasive tests and imaging to delineate their disease and help guide appropriate management. Ultrasound and computed tomography are commonly ordered in the workup of PAD. Magnetic resonance imaging (MRI), on the other hand, is less often acknowledged as a useful tool in this disease. Nevertheless, MRI is an important test that can effectively characterize atherosclerotic plaque, assess vessel patency in highly calcified disease, and measure lower extremity perfusion.

Literature

  • Belch JJ, Topol EJ, Agnelli G, Bertrand M, Califf RM & Clement DL, et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med. 2003;163(8):884–92. First citation in articleCrossref MedlineGoogle Scholar

  • Criqui MH & Aboyans V. Epidemiology of Peripheral Artery Disease. Circ Res. 2015;116(9):1509. First citation in articleCrossref MedlineGoogle Scholar

  • Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA & Drachman DE, et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(11):1465–508. First citation in articleCrossref MedlineGoogle Scholar

  • Sibley RC, Reis SP, MacFarlane JJ, Reddick MA, Kalva SP & Sutphin PD. Noninvasive Physiologic Vascular Studies: A Guide to Diagnosing Peripheral Arterial Disease. Radiographics. 2017;37(1):345–56. First citation in articleCrossrefGoogle Scholar

  • Staub D, Partovi S, Imfeld S, Uthoff H, Baldi T & Aschwanden M, et al. Novel applications of contrast-enhanced ultrasound imaging in vascular medicine. Vasa. 2013;42(1):17–31. First citation in articleLinkGoogle Scholar

  • Kaspar M, Partovi S, Aschwanden M, Imfeld S, Baldi T & Uthoff H, et al. Assessment of microcirculation by contrast-enhanced ultrasound: a new approach in vascular medicine. Swiss Med Wkly. 2015;145:w14047. First citation in articleCrossref MedlineGoogle Scholar

  • Seinturier C, Blaise S, Pichot O, Guigard S, Genty C & Jean Luc M, et al. Is contrast enhanced ultrasonography a useful tool for the evaluation of muscular microcirculation in patients with critical limb ischaemia? Vasa. 2017;46(5):389–94. First citation in articleLinkGoogle Scholar

  • Franz RW, Jump MA, Spalding MC & Jenkins JJ. Accuracy of Duplex Ultrasonography in Estimation of Severity of Peripheral Vascular Disease. Int J Angiol. 2013;22(3):155–8. First citation in articleCrossref MedlineGoogle Scholar

  • Baril DT, Rhee RY, Kim J, Makaroun MS, Chaer RA & Marone LK. Duplex criteria for determination of in-stent stenosis after angioplasty and stenting of the superficial femoral artery. J Vasc Surg. 2009;49(1):133–9. First citation in articleCrossref MedlineGoogle Scholar

  • Bredahl K, Taudorf M, Long A, Lönn L, Rouet L & Ardon R, et al. Three-dimensional Ultrasound Improves the Accuracy of Diameter Measurement of the Residual Sac in EVAR Patients. Eur J Vasc Endovasc Surg. 2013;46(5):525–32. First citation in articleCrossref MedlineGoogle Scholar

  • Thomsen HS. Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol. 2006;16(12):2619–21. First citation in articleCrossref MedlineGoogle Scholar

  • Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB & Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62. First citation in articleCrossref MedlineGoogle Scholar

  • Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I & Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188(2):586–92. First citation in articleCrossref MedlineGoogle Scholar

  • Chrysochou C, Power A, Shurrab AE, Husain S, Moser S & Lay J, et al. Low Risk for Nephrogenic Systemic Fibrosis in Nondialysis Patients Who Have Chronic Kidney Disease and Are Investigated with Gadolinium-Enhanced Magnetic Resonance Imaging. Clin J Am Soc Nephrol. 2010;5(3):484–9. First citation in articleCrossref MedlineGoogle Scholar

  • Vosshenrich R & Reimer P. Nephrogenic systemic fibrosis. Vasa. 2009;38(1):31–8. First citation in articleLinkGoogle Scholar

  • Hemke R, van Veenendaal M, Kuijpers TW, van Rossum MA & Maas M. Increasing feasibility and patient comfort of MRI in children with juvenile idiopathic arthritis. Pediatr Radiol. 2012;42(4):440–8. First citation in articleCrossref MedlineGoogle Scholar

  • Marc D & Tania SF. DC. Claustrophobia during magnetic resonance imaging: Cohort study in over 55,000 patients. J Magn Reson Imaging. 2007;26(5):1322–7. First citation in articleCrossref MedlineGoogle Scholar

  • Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP & Moya AL, et al. CT and MRI early vessel signs reflect clot compsition in acute stroke. Stroke. 2011;42(5):1237–43. First citation in articleCrossref MedlineGoogle Scholar

  • Lin E & Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403–8. First citation in articleCrossref MedlineGoogle Scholar

  • Cina A, Di Stasi C, Semeraro V, Marano R, Savino G & Iezzi R, et al. Comparison of CT and MR angiography in evaluation of peripheral arterial disease before endovascular intervention. Acta Radiol. 2015;57(5):547–56. First citation in articleCrossref MedlineGoogle Scholar

  • Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J & Koktzoglou I. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn Reson Med. 2010;63(4):951–8. First citation in articleCrossref MedlineGoogle Scholar

  • Varga-Szemes A, Wichmann JL, Schoepf UJ, Suranyi P, De Cecco CN & Muscogiuri G, et al. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1116–24. First citation in articleCrossref MedlineGoogle Scholar

  • Miyazaki M & Akahane M. Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging. 2012;35(1):1–19. First citation in articleCrossref MedlineGoogle Scholar

  • Partovi S, Rasmus M, Schulte A-C, Rengier F, Jacob AL & Aschwanden M, et al. ECG-triggered non-enhanced MR angiography of peripheral arteries in comparison to DSA in patients with peripheral artery occlusive disease. MAGMA. 2013;26(3):271–80. First citation in articleCrossref MedlineGoogle Scholar

  • Bazan HA, Le L, Donovan M, Sidhom T, Smith TA & Sternbergh WC. Retrograde pedal access for patients with critical limb ischemia. J Vasc Surg. 2014;60(2):375–82. First citation in articleCrossref MedlineGoogle Scholar

  • Marmagkiolis K, Sardar P, Mustapha JA, Montero-Baker M, Charitakis K & Iliescu C, et al. Transpedal Access for the Management of Complex Peripheral Artery Disease. J Invasive Cardiol. 2017;29(12):425–9. First citation in articleMedlineGoogle Scholar

  • Baumann F, Willenberg T, Do D-D, Keo H-H, Baumgartner I & Diehm N. Endovascular Revascularization of Below-the-Knee Arteries: Prospective Short-Term Angiographic and Clinical Follow-Up. J Vasc Interv Radiol. 2011;22(12):1665–73. First citation in articleCrossref MedlineGoogle Scholar

  • Hicks CW, Najafian A, Farber A, Menard MT, Malas MB & Black JH, 3rd, et al. Below-knee endovascular interventions have better outcomes compared to open bypass for patients with critical limb ischemia. Vasc Med. 2017;22(1):28–34. First citation in articleCrossref MedlineGoogle Scholar

  • Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA & Fowkes FGR. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(1, Supplement):S1–S75. First citation in articleCrossref MedlineGoogle Scholar

  • Jaff MR, White CJ, Hiatt WR, Fowkes GR, Dormandy J & Razavi M, et al. An Update on Methods for Revascularization and Expansion of the TASC Lesion Classification to Include Below-the-Knee Arteries: A Supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II): The TASC Steering Comittee(*). Ann Vasc Dis. 2015;8(4):343–57. First citation in articleMedlineGoogle Scholar

  • Pollak AW & Kramer CM. MRI in Lower Extremity Peripheral Arterial Disease: Recent Advancements. Curr Cardiovasc Imaging Rep. 2013;6(1):55–60. First citation in articleCrossref MedlineGoogle Scholar

  • Balu N, Wang J, Dong L, Baluyot F, Chen H & Yuan C. Current techniques for MR imaging of atherosclerosis. Top Magn Reson Imaging. 2009;20(4):203–15. First citation in articleCrossref MedlineGoogle Scholar

  • Corti R & Fuster V. Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J. 2011;32(14):1709–19b. First citation in articleCrossref MedlineGoogle Scholar

  • Katsanos K, Spiliopoulos S, Reppas L & Karnabatidis D. Debulking Atherectomy in the Peripheral Arteries: Is There a Role and What is the Evidence? Cardiovasc Intervent Radiol. 2017;40(7):964–77. First citation in articleCrossref MedlineGoogle Scholar

  • Semaan E, Hamburg N, Nasr W, Shaw P, Eberhardt R & Woodson J, et al. Endovascular Management of the Popliteal Artery: Comparison of Atherectomy and Angioplasty. Vasc Endovascular Surg. 2010;44(1):25–31. First citation in articleCrossref MedlineGoogle Scholar

  • Roberts D, Niazi K, Miller W, Krishnan P, Gammon R & Schreiber T, et al. Effective Endovascular Treatment of Calcified Femoropopliteal Disease With Directional Atherectomy and Distal Embolic Protection: Final Results of the DEFINITIVE Ca(++) Trial. Catheter Cardiovasc Interv. 2014;84(2):236–44. First citation in articleCrossref MedlineGoogle Scholar

  • Akkus NI, Abdulbaki A, Jimenez E & Tandon N. Atherectomy devices: technology update. Med Devices. 2015;8:1–10. First citation in articleMedlineGoogle Scholar

  • Okazaki J, Matsuda D, Tanaka K, Ishida M, Kuma S & Morisaki K, et al. Analysis of wound healing time and wound-free period as outcomes after surgical and endovascular revascularization for critical lower limb ischemia. J Vasc Surg. 2018;67(3):817–25. First citation in articleCrossref MedlineGoogle Scholar

  • Shiraki T, Iida O, Takahara M, Soga Y, Yamauchi Y & Hirano K, et al. Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis. Eur J Vasc Endovasc Surg. 2015;49(5):565–73. First citation in articleCrossref MedlineGoogle Scholar

  • Palena LM, Garcia LF, Brigato C, Sultato E, Candeo A & Baccaglini T, et al. Angiosomes: how do they affect my treatment? Tech Vasc Interv Radiol. 2014;17(3):155–69. First citation in articleCrossref MedlineGoogle Scholar

  • Detre JA, Rao H, Wang DJ, Chen YF & Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging. 2012;35(5):1026–37. First citation in articleCrossref MedlineGoogle Scholar

  • Stacy MR, Qiu M, Papademetris X, Caracciolo CM, Constable RT & Sinusas AJ. Application of BOLD Magnetic Resonance Imaging for Evaluating Regional Volumetric Foot Tissue Oxygenation: A Feasibility Study in Healthy Volunteers. Eur J Vasc Endovasc Surg. 2016;51(5):743–9. First citation in articleCrossref MedlineGoogle Scholar

  • Aschwanden M, Partovi S, Jacobi B, Fergus N, Schulte A-C & Robbin MR, et al. Assessing the end-organ in peripheral arterial occlusive disease—from contrast—enhanced ultrasound to blood-oxygen-level-dependent MR imaging. Cardiovasc Diagn Ther. 2014;4(2):165–72. First citation in articleMedlineGoogle Scholar

  • Bajwa A, Wesolowski R, Patel A, Saha P, Ludwinski F & Ikram M, et al. Blood Oxygenation Level-Dependent CMR-Derived Measures in Critical Limb Ischemia and Changes With Revascularization. J Am Coll Cardiol. 2016;67(4):420–31. First citation in articleCrossref MedlineGoogle Scholar

  • Partovi S, Aschwanden M, Jacobi B, Schulte AC, Walker UA & Staub D, et al. Correlation of muscle BOLD MRI with transcutaneous oxygen pressure for assessing microcirculation in patients with systemic sclerosis. J Magn Reson Imaging. 2013;38(4):845–51. First citation in articleCrossref MedlineGoogle Scholar

  • Partovi S, Schulte AC, Staub D, Jacobi B, Aschwanden M & Walker UA, et al. Correlation of skeletal muscle blood oxygenation level-dependent MRI and skin laser Doppler flowmetry in patients with systemic sclerosis. J Magn Reson Imaging. 2014;40(6):1408–13. First citation in articleCrossref MedlineGoogle Scholar

  • Ledermann HP, Schulte A-C, Heidecker H-G, Aschwanden M, Jäger KA & Scheffler K, et al. Blood Oxygenation Level–Dependent Magnetic Resonance Imaging of the Skeletal Muscle in Patients With Peripheral Arterial Occlusive Disease. Circulation. 2006;113(25):2929. First citation in articleCrossref MedlineGoogle Scholar

  • Potthast S, Schulte A, Kos S, Aschwanden M & Bilecen D. Blood Oxygenation Level-Dependent MRI of the Skeletal Muscle during Ischemia in Patients with Peripheral Arterial Occlusive Disease. Rofo. 2009;181(12):1157–61. First citation in articleCrossref MedlineGoogle Scholar

  • Huegli RW, Schulte A-C, Aschwanden M, Thalhammer C, Kos S & Jacob AL, et al. Effects of percutaneous transluminal angioplasty on muscle BOLD-MRI in patients with peripheral arterial occlusive disease: preliminary results. Eur Radiol. 2009;19(2):509–15. First citation in articleCrossref MedlineGoogle Scholar

  • Rajagopalan S & Shin T. Being BOLD in Critical Limb Ischemia. J Am Coll Cardiol. 2016;67(4):432–4. First citation in articleCrossref MedlineGoogle Scholar

  • Mathew RC & Kramer CM. Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc Med. 2018;23(2):143–52. First citation in articleCrossref MedlineGoogle Scholar

  • Isbell DC, Epstein FH, Zhong X, DiMaria JM, Berr SS & Meyer CH, et al. Calf muscle perfusion at peak exercise in peripheral arterial disease: measurement by first-pass contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2007;25(5):1013–20. First citation in articleCrossref MedlineGoogle Scholar

  • Lopez D & Kramer CM. Oxygenation and flow in the limbs: Novel methods to characterize peripheral artery disease. Curr Cardiovasc Imaging Rep. 2013;6(2):150–7. First citation in articleCrossref MedlineGoogle Scholar