Skip to main content
Published Online:https://doi.org/10.1024/1016-264X/a000161

Abstract. This study examines the usefulness of easy to obtain EEG measures to discriminate learning-disabled children (LD) from healthy control children. Here the spectral power in the delta, theta, alpha, and beta EEG bands and various power ratios (theta/alpha, theta/beta, beta/alpha, beta/theta, beta/[alpha+theta], [delta+theta]/alpha, alpha/delta, and [theta+alpha]/beta) are applied. These measures were subjected to a factor analysis with varimax rotation revealing four factors explaining 90 % of the entire variance. Factor 1 represents the power of the slow EEG frequency bands delta and theta, factor 2 the relationship between fast and slow frequency bands, factor 3 the slow to fast ratios, and factor 4 the absolute power of nearly all frequency bands. Group differences were found for three factor scores (1, 3, and 4). The linear discriminant analysis with the four factor scores as dependent and the group allocation as independent variables revealed a correct classification of 86 %. Although this classification is far from being perfect it is nevertheless reasonable high and statistically significant. Thus, EEG measures like the one used in this study might support the diagnosis of this difficult to diagnose disability. In addition, the EEG measures identified provide a deeper insight into the neural underpinnings of this disability. Based on this knowledge it might be possible to design new therapeutic strategies to treat LD.


Klassifikation von lerngestörten Kindern mit EEG-Kennwerten und einer linearen Diskriminanzanalyse

Zusammenfassung. Im Rahmen dieser Studie wird untersucht, ob relativ einfach zu messende EEG-Kennwerte genutzt werden können, um lerngestörte von unauffälligen Kindern zu unterscheiden. Als EEG-Kennwerte werden die spektrale Dichten im delta-, theta-, alpha- und beta-Band sowie verschiedene Verhältnismaße (theta/alpha, theta/beta, beta/alpha, beta/theta, beta/[alpha+theta], [delta+theta]/alpha, alpha/delta, and [theta+alpha]/beta). Diese Kennwerte wurden einer Faktoranalyse mit Varimaxrotation zugeführt, die vier Faktoren identifizierte, die 90 % der Gesamtvarianz erklärten. Faktor 1 erklärt vor allem die Varianz der Spektraldichten der langsamen EEG-Bänder, Faktor 2 die der Verhältnisse der Spektraldichten schneller zu langsamen Frequenzbändern, Faktor 3 die der Verhältnisse der Spektraldichten von langsamen zu schnellen Frequenzbändern, während Faktor 4 die Varianz der absoluten Spektraldichten in allen Frequenzbändern erklärte. Für die Faktorwerte der Faktoren 1, 3 und 4 ergaben sich signifikante Gruppenunterschiede zwischen den lerngestörten und unauffälligen Kindern. Diese Faktorwerte dieser 4 Faktoren wurden dann genutzt, um mit Hilfe einer linearen Diskriminanzanalyse lerngestörte von unauffälligen Kindern zu unterscheiden. Die Klassifikationsgenauigkeit erreichte mit 86 % eine sehr gute Trefferquote. Obwohl diese Klassifikation nicht perfekt ist, offenbaren sich diese EEG-Kennwerte als nützliche Kennwerte für die objektive Klassifizierung lerngestörter Kinder. Insofern könnten diese Kennwerte als Hilfsmittel für die Diagnose von Lernstörungen herangezogen werden. Darüber hinaus könnten diese EEG-Kennwerte auch bei der Planung von und Durchführung von Therapiemaßnahmen hilfreich sein.

References

  • Arns, M., Conners, C.K., & Kraemer, H.C. (2013). A decade of EEG Theta/Beta Ratio Research in ADHD: a meta-analysis. Journal of Attention Disorders, 17, 374 – 383. First citation in articleCrossrefGoogle Scholar

  • Bashein, G., Nessly, M.L., Bledsoe, S.W., Townes, B.D., Davis, K.B., & Coppel, D.B., et al. (1992). Electroencephalography during surgery with cardiopulmonary bypass and hypothermia. Anesthesiology, 76, 878 – 891. First citation in articleCrossrefGoogle Scholar

  • Becerra, J., Fernandez, T., Harmony, T., Caballero, M.I., Garcia, F., & Fernandez-Bouzas, A., et al. (2006). Follow-up study of learning-disabled children treated with neurofeedback or placebo. Clinical EEG and Neuroscience, 37, 198 – 203. First citation in articleCrossrefGoogle Scholar

  • Buhle, J.T., Silvers, J.A., Wager, T.D., Lopez, R., Onyemekwu, C., & Kober, H., et al. (2014). Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981 – 2990. First citation in articleCrossrefGoogle Scholar

  • Cao, L., Li, J., Sun, Y., Zhu, H., & Yan, C. (2010). EEG-based vigilance analysis by using fisher score and PCA algorithm. Progress in Informatics and Computing (PIC), 2010 IEEE International Conference on, 1, 175 – 179. First citation in articleGoogle Scholar

  • Cavendish, W. (2013). Identification of learning disabilities: implications of proposed DSM-5 criteria for school-based assessment. Journal of Learning Disabilities, 46(1), 52 – 57. First citation in articleCrossrefGoogle Scholar

  • Chabot, R.J., di Michele, F., Prichep, L., & John, E.R. (2001). The clinical role of computerized EEG in the evaluation and treatment of learning and attention disorders in children and adolescents. The Journal of Neuropsychiatry & Clinical Neurosciences, 13(2), 171 – 186. First citation in articleCrossrefGoogle Scholar

  • Clarke, A.R., Barry, R.J., McCarthy, R., & Selikowitz, M. (2002). EEG differences between good and poor responders to methylphenidate and dexamphetamine in children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 113, 194 – 205. First citation in articleCrossrefGoogle Scholar

  • Clarke, A.R., Barry, R.J., McCarthy, R., Selikowitz, M., & Johnstone, S.J. (2007). Effects of stimulant medications on the EEG of girls with Attention-Deficit/Hyperactivity Disorder. Clinical Neurophysiology, 118, 2700 – 2708. First citation in articleCrossrefGoogle Scholar

  • Coyne, J.T., Baldwin, C., Cole, A., Sibley, C., & Roberts, D.M. (2009). Applying real time physiological measures of cognitive load to improve training. In D.D. Schmorrow, I.V. EstabrookeM. GrootjenEds., Foundations of augmented cognition. Neuroergonomics and operational neuroscience (Vol. 5638, pp. 469– 478). Berlin, Heidelberg: Springer. First citation in articleGoogle Scholar

  • Elmer, S., Rogenmoser, L., Kuhnis, J., & Jäncke, L. (2015). Bridging the Gap between Perceptual and Cognitive Perspectives on Absolute Pitch. Journal of Neuroscience, 35, 366 – 371. First citation in articleCrossrefGoogle Scholar

  • Fernandez, T., Harmony, T., Fernandez-Bouzas, A., Silva, J., Herrera, W., & Santiago-Rodriguez, E., et al. (2002). Sources of EEG activity in learning disabled children. Clinical Electroencephalography, 33, 160 – 164. First citation in articleCrossrefGoogle Scholar

  • Fernández, T., Herrera, W., Harmony, T., Díaz-Comas, L., Santiago, E., & Sánchez, L., et al. (2003). EEG and behavioral changes following neurofeedback treatment in learning disabled children. Clinical Electroencephalography, 34, 145 – 152. First citation in articleCrossrefGoogle Scholar

  • Fernández, T., Harmony, T., Mendoza, O., López-Alanís, P., Marroquín, J.L., & Otero, G., et al. (2012). Event-related EEG oscillations to semantically unrelated words in normal and learning disabled children. Brain and Cognition, 80, 74 – 82. First citation in articleCrossrefGoogle Scholar

  • Fonseca, L.C., Tedrus, G.M., Chiodi, M. G., Cerqueira, J.N., & Tonelotto, J.M. (2006). Quantitative EEG in children with learning disabilities: analysis of band power. Arquivos de Neuro-Psiquiatria, 64, 376 – 381. First citation in articleCrossrefGoogle Scholar

  • Freeman, F.G., Mikulka, P.J., Prinzel, L.J., & Scerbo, M. W. (1999). Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biological Psychology, 50(1), 61 – 76. First citation in articleCrossrefGoogle Scholar

  • Gasser, T., Verleger, R., Bacher, P., & Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69(2), 91 – 99. First citation in articleCrossrefGoogle Scholar

  • Gasser, T., Rousson, V., & Schreiter Gasser, U. (2003). EEG power and coherence in children with educational problems. Journal of Clinical Neurophysiology : official publication of the American Electroencephalographic Society, 20, 273 – 282. First citation in articleCrossrefGoogle Scholar

  • Hampson, M., Tokoglu, F., Shen, X., Scheinost, D., Papademetris, X., & Constable, R.T. (2012). Intrinsic brain connectivity related to age in young and middle aged adults. PLoS One, 7(9), e44067. First citation in articleCrossrefGoogle Scholar

  • Harmony, T., Marosi, E., Díaz de León, A.E., Becker, J., & Fernández, T. (1990). Effect of sex, psychosocial disadvantages and biological risk factors on EEG maturation. Electroencephalography and Clinical Neurophysiology, 75, 482 – 491. First citation in articleCrossrefGoogle Scholar

  • Ibrahim, G.M., Wong, S.M., Anderson, R.A., Singh-Cadieux, G., Akiyama, T., & Ochi, A., et al. (2014). Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Experimental Neurology, 251, 30 – 38. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L., & Langer, N. (2011). A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG. Journal of Neuropsychology, 5, 178 – 202. First citation in articleCrossrefGoogle Scholar

  • Kavale, K.A. (2005). Identifying specific learning disability: is responsiveness to intervention the answer? Journal of Learning Disabilities, 38, 553 – 562. First citation in articleCrossrefGoogle Scholar

  • Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., & John, E.R., et al. (2005). Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 26, 165 – 171. First citation in articleCrossrefGoogle Scholar

  • Langer, N., Pedroni, A., Gianotti, L.R.R., Hänggi, J., Knoch, D., & Jäncke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33, 1393 – 1406. First citation in articleCrossrefGoogle Scholar

  • Langer, N., von Bastian, C.C., Wirz, H., Oberauer, K., & Jäncke, L. (2013). The effects of working memory training on functional brain network efficiency. Cortex, 49, 2424 – 2438. First citation in articleCrossrefGoogle Scholar

  • Luchinger, R., Michels, L., Martin, E., & Brandeis, D. (2012). Brain state regulation during normal development: Intrinsic activity fluctuations in simultaneous EEG-fMRI. Neuroimage, 60, 1426 – 1439. First citation in articleCrossrefGoogle Scholar

  • McDermott, R., Goldman, S., & Varenne, H. (2006). The Cultural Work of Learning Disabilities. Educational Researcher, 35, 12 – 17. First citation in articleCrossrefGoogle Scholar

  • Monastra, V.J., Lubar, J.F., Linden, M., VanDeusen, P., Green, G., & Wing, W., et al. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: an initial validation study. Neuropsychology, 13, 424 – 433. First citation in articleCrossrefGoogle Scholar

  • Ponomarev, V.A., Mueller, A., Candrian, G., Grin-Yatsenko, V.A., & Kropotov, J.D. (2014). Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults. Clinical Neurophysiology, 125(1), 83 – 97. First citation in articleCrossrefGoogle Scholar

  • Putman, P., Verkuil, B., Arias-Garcia, E., Pantazi, I., & van Schie, C. (2014). EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective & Behavioral Neuroscience, 14, 782 – 791. First citation in articleGoogle Scholar

  • Rabbi, A.F., Ivanca, K., Putnam, A.V., Musa, A., Thaden, C.B., & Fazel-Rezai, R. (2009). Human performance evaluation based on EEG signal analysis: A prospective review. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 1879 – 1882. First citation in articleGoogle Scholar

  • Raichle, M. E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 676 – 682. First citation in articleCrossrefGoogle Scholar

  • Razavi, N., Jann, K., Koenig, T., Kottlow, M., Hauf, M., & Strik, W., et al. (2013). Shifted coupling of EEG driving frequencies and fMRI resting state networks in schizophrenia spectrum disorders. PLoS One, 8(10), e76604. First citation in articleCrossrefGoogle Scholar

  • Scanlon, D. (2013). Specific learning disability and its newest definition: which is comprehensive? And which is insufficient? Journal of Learning Disabilities, 46(1), 26 – 33. First citation in articleCrossrefGoogle Scholar

  • Schomer, D.L. (2011). Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (6th revised ed.). Lippincott Williams and Wilkins. First citation in articleGoogle Scholar

  • Schutter, D.J., & Van Honk, J. (2005). Electrophysiological ratio markers for the balance between reward and punishment. Brain Research. Cognitive Brain Research, 24, 685 – 690. First citation in articleCrossrefGoogle Scholar

  • White, C. (2011). Brain circuitry model for mental illness will transform management, NIH mental health director says. British Medical Journal, 343, d5581. First citation in articleCrossrefGoogle Scholar