Skip to main content
Original article

Age-related differences in the predictive ability of executive functions for intelligence

Analysis of NAB Executive Functions Module and WAIS-IV Scores

Published Online:https://doi.org/10.1024/1016-264X/a000179

Abstract. The Executive Functions Module of the Neuropsychological Assessment Battery (NAB) and the Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV) were used to investigate age-related differences in the predictability of intelligence with executive functions. The NAB subtests age and sex better predicted the WAIS-IV index scales and the Full Scale IQ in the older than in the younger age group, with total variance explained up to 75 % in 60- to 88-year-olds and up to 46 % in 18- to 59-year-olds. The NAB subtests Categories and Word Generation were most frequently included, whereas Letter Fluency was least frequently included in the best-fitting models of WAIS-IV prediction. Mazes predicted better in the younger age group, whereas Judgment predicted better in the older age group.


Altersbedingte Unterschiede in der Vorhersage von Intelligenzleistung (WAIS-IV) auf der Basis des NAB Moduls Exekutive Funktionen

Zusammenfassung. Das Modul Exekutive Funktionen der Neuropsychological Assessment Battery (NAB) und die Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV) wurden eingesetzt, um den Einfluss des Alters auf die Vorhersagbarkeit von Intelligenz mit den exekutiven Funktionen zu testen. Die NAB Untertests, Alter und Geschlecht zeigen eine höhere Vorhersagekraft für die WAIS-IV Indizes und den Gesamt-IQ bei den älteren als bei den jüngeren Testteilnehmern, mit einer erklärten Varianz von bis zu 75 % bei den 60- bis 88-Jährigen und 46 % bei den 18- bis 59-Jährigen. Von allen NAB Untertests waren Kategorien und Wörter bilden am häufigsten und Wortflüssigkeit am seltesten in den besten WAIS-IV-Vorhersagemodellen enthalten. Labyrinthe sagten besser WAIS-IV-Leistungen im jungen Alter vorher, während Urteilen ein besserer Prädiktor im höheren Alter war.

References

  • Allaire, J. C., & Marsiske, M. (1999). Everyday cognition: Age and intellectual ability correlates. Psychology and Aging, 14, 627 – 644. First citation in articleCrossrefGoogle Scholar

  • Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychological Review, 16, 17 – 42. First citation in articleCrossrefGoogle Scholar

  • Ardila, A. (1999). A neuropsychological approach to intelligence. Neuropsychology Review, 9, 117 – 136. First citation in articleCrossrefGoogle Scholar

  • Ardila, A. (2007). Normal aging increases cognitive heterogeneity: Analysis of dispersion in WAIS-III scores across age. Archives of Clinical Neuropsychology, 22, 1003 – 1011. First citation in articleCrossrefGoogle Scholar

  • Ardila, A., Pineda, D., & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15, 31 – 36. First citation in articleCrossrefGoogle Scholar

  • Arffa, S. (2007). The relationship of intelligence to executive function and nonexecutive function measures in a sample of average, above average, and gifted youth. Archives of Clinical Neuropsychology, 22, 969 – 978. First citation in articleCrossrefGoogle Scholar

  • Baddeley, A., & DellaSala, S. (1996). Working memory and executive control. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351, 1397 – 1403. First citation in articleCrossrefGoogle Scholar

  • Balinsky, B. (1941). An analysis of the mental factors of various age groups from nine to sixty. Genetic Psychology Monographs, 23, 191 – 234. First citation in articleGoogle Scholar

  • Baltes, P. B., Cornelius, S. W., Spiro, A., Nesselroade, J. R., & Willis, S. L. (1980). Integration versus differentation of fluid-crystallized intelligence in old age. Developmental Psychology, 16, 625 – 635. First citation in articleCrossrefGoogle Scholar

  • Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult lifespan: A new window to the study of cognitive aging? Psychology and Aging, 12, 12 – 21. First citation in articleCrossrefGoogle Scholar

  • Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135, 1154 – 1164. First citation in articleCrossrefGoogle Scholar

  • Bonsang, E., Adam, S., & Perelman, S. (2012). Does retirement affect cognitive functioning? Journal of Health Economics, 31, 490 – 501. First citation in articleCrossrefGoogle Scholar

  • Börsch-Supan, A. (2010). Müssen, dürfen, sollen, können, oder wollen ältere Menschen noch arbeiten? In H. HäfnerK. BeyreutherW. Schlicht (Hrsg.), Altern gestalten (S. 7 – 21). Berlin: Springer. First citation in articleGoogle Scholar

  • Brydges, C. R., Reid, C. L., Fox, A. M., & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40, 458 – 469. First citation in articleCrossrefGoogle Scholar

  • Buczylowska, D., Bornschlegl, M., Daseking, M., Jäncke, L., & Petermann, F. (2013). Zur deutschen Adaptation der Neuropsychological Assessment Battery (NAB). Zeitschrift für Neuropsychologie, 24, 217 – 227. First citation in articleLinkGoogle Scholar

  • Buczylowska, D., & Petermann, F. (2016a). Age-related differences and heterogeneity in executive functions: Analysis of NAB Executive Functions Module scores. Archives of Clinical Neuropsychology, 31, 254 – 262. First citation in articleCrossrefGoogle Scholar

  • Buczylowska, D., & Petermann, F. (2016b). Age-reated commonalities and differences in the relationship between executive functions and intelligence: Analysis of the NAB Executive Functions Module and WAIS-IV scores. Applied Neuropsychology: Adult (submitted). First citation in articleGoogle Scholar

  • Burgess, P. W. (2010). Assessment of executive function. In J. M. GurdU. KischkaJ. C. MarshallEds., Handbook of clinical neuropsychology (2nd ed., pp. 349 – 368). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Burgess, P. W., Evans, J., Emslie, H., & Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International neuropsychological Society, 4, 547 – 558. First citation in articleCrossrefGoogle Scholar

  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1 – 22. First citation in articleCrossrefGoogle Scholar

  • Cattell, R. B. (1987). Intelligence: Its structure, growth and action. New York: Elsevier. First citation in articleGoogle Scholar

  • Crawford, J. R., Bryan, J., Luszcz, M. A., Obonsawin, M. C., & Stewart, L. (2010). The executive decline hypothesis of cognitive aging: Do executive deficits qualify as differential deficits and do they mediate age-related memory decline? Aging, Neuropsychology, and Cognition, 7, 9 – 31. First citation in articleCrossrefGoogle Scholar

  • Daseking, M., & Petermann, F. (2013). Analyse von Querschnittsdaten zur Intelligenzentwicklung im Erwachsenenalter: eine Studie zur deutschsprachigen Version der WAIS-IV. Zeitschrift für Neuropsychologie, 24, 149 – 160. First citation in articleLinkGoogle Scholar

  • Davis, A. S., Pierson, E. E., & Finch, W. H. (2011). A canonical correlation analysis of intelligence and executive functioning. Applied Neuropsychogist, 18, 61 – 68. First citation in articleCrossrefGoogle Scholar

  • de Frias, C. M., Dixon, R. A., & Strauss, E. (2006). Structure of four executive functioning tests in healthy older adults. Neuropsychology, 20, 206 – 214. First citation in articleCrossrefGoogle Scholar

  • de Frias, C. M., Lövdén, M., Lindenberger, U., & Nilsson, L.-G. (2007). Revisiting the dedifferentiation hypothesis with longitudinal multi-cohort data. Intelligence, 35, 381 – 392. First citation in articleCrossrefGoogle Scholar

  • De Luca, C. R., & Leventer, R. J. (2008). Developmental trajectories of executive functions across the lifespan. In V. AndersonR. JacobsP. J. AndersonEds., Executive functions and the frontal lobes: A lifespan perspecive (pp. 23 – 56). New York: Taylor & Francis. First citation in articleGoogle Scholar

  • De Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J. A., Proffitt, T. M., Mahony, K., & … Pantelis, C. (2003). Normative data from the CANTAB. I: Development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25, 242 – 254. First citation in articleCrossrefGoogle Scholar

  • Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130 – 147. First citation in articleCrossrefGoogle Scholar

  • Decker, S. L., Hill, S. K., & Dean, R. S. (2007). Evidence of construct similarity in executive functions and fluid reasoning abilities. International Journal of Neuroscience, 117, 735 – 748. First citation in articleCrossrefGoogle Scholar

  • Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis Kaplan Executive Function System: Examiner’s manual. San Antonio, TX: The Psychological Corporation. First citation in articleGoogle Scholar

  • Diaz-Asper, C. M., Schretlen, D. J., & Pearlson, G. D. (2004). How well does IQ predict neuropsychological test performance in normal adults? Journal of the International Neuropsychological Society, 10, 82 – 90. First citation in articleCrossrefGoogle Scholar

  • Drozdick, L. W., Wahlstrom, D., Zhu, J., & Weiss, L. G. (2012). The Wechsler Adult Intelligence Scale – Fourth Edition – and the Wechsler Memory Scale – Fourth Edition. In D. P. FlanaganP. L. HarrisonEds., Contemporary intellectual assessment: Theories, tests, and issues (3rd ed., pp. 197 – 223). New York: Guilford. First citation in articleGoogle Scholar

  • Duke, L. M., & Kaszniak, A. W. (2000). Executive control functions in degenerative dementias: A comparative review. Neuropsychology Review, 10, 75 – 99. First citation in articleCrossrefGoogle Scholar

  • Duncan, J., Burgess, P. W., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261 – 268. First citation in articleCrossrefGoogle Scholar

  • Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257 – 303. First citation in articleCrossrefGoogle Scholar

  • Duncan, J., Johnson, M., & Swale, J. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Neuropsychology, 14, 713 – 741. First citation in articleCrossrefGoogle Scholar

  • Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., & … Nimmo-Smith, I. (2008). Goal neglect and Spearman’s g: Competing parts of a complex task. Journal of Experimental Psychology-General, 137, 131 – 148. First citation in articleCrossrefGoogle Scholar

  • Egger, J. I. M., Van Aken, L., Kessels, R. P. C., Wingbermühle, E., Van der Veld, W., & Verhoeven, W. M. A. (2011). Fluid intelligence and executive functioning: Partial overlap in patients with psychiatric disorders. European Psychiatry, 26, 1215. First citation in articleCrossrefGoogle Scholar

  • Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49 – 59. First citation in articleCrossrefGoogle Scholar

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology-General, 128, 309 – 331. First citation in articleCrossrefGoogle Scholar

  • Figueirêdo Vale Capucho, P. H., & Dozzi Brucki, S. M. (2011). Judgment in mild cognitive impairment and Alzheimer’s disease. Dementia & Neuropsychologia, 5, 297 – 302. First citation in articleCrossrefGoogle Scholar

  • Flanagan, D. P., & Kaufman, A. S. (2009). Essentials of WISC-IV assessment (2nd ed.). Hoboken, NJ: Wiley. First citation in articleGoogle Scholar

  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172 – 179. First citation in articleCrossrefGoogle Scholar

  • Funahashi, S. (2001). Neuronal mechanisms of executive control by the prefrontal cortex. Neuroscience Research, 39, 147 – 165. First citation in articleCrossrefGoogle Scholar

  • Garrett, H. E. (1938). Differentiable mental traits. Psychological Record, 2, 259 – 298. First citation in articleCrossrefGoogle Scholar

  • Garrett, H. E. (1946). A developmental theory of intelligence. American Psychologist, 1, 372 – 378. First citation in articleCrossrefGoogle Scholar

  • Gavett, B. E., Lou, K. R., Daneshvar, D. H., Green, R. C., Jefferson, A. L., & Stern, R. A. (2012). Diagnostic accuracy statistics for seven Neuropsychological Assessment Battery (NAB) test variables in the diagnosis of Alzheimer’s disease. Applied Neuropsychology: Adult, 19, 108 – 115. First citation in articleCrossrefGoogle Scholar

  • Gronwall, D., & Wrightson, P. (1974). Delayed recovery of intellectual function after minor head injury. The Lancet, 304, 605 – 609. First citation in articleCrossrefGoogle Scholar

  • Heaton, R. K. (1981). Wisconsin Card Sorting Test: Manual. Odessa, FL: Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Horn, J. L., & Cattell, R. B. (1966). Refinement test of theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253 – 270. First citation in articleCrossrefGoogle Scholar

  • Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107 – 129. First citation in articleCrossrefGoogle Scholar

  • Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637 – 671. First citation in articleCrossrefGoogle Scholar

  • Keith, T. Z., Reynolds, M. R., Roberts, L. G., Winter, A. L., & Austin, C. A. (2011). Sex differences in latent cognitive abilities ages 5 to 17: Evidence from the Differential Ability Scales – Second Edition. Intelligence, 39, 389 – 404. First citation in articleCrossrefGoogle Scholar

  • Lamar, M., Zonderman, A. B., & Resnick, S. (2002). Contribution of specific cognitive processes to executive functioning in an aging population. Neuropsychology, 16, 156 – 162. First citation in articleCrossrefGoogle Scholar

  • Li, S. C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes, P. B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the lifespan. Psychological Science, 15, 155 – 163. First citation in articleCrossrefGoogle Scholar

  • Macdougall, E. E., & Mansbach, W. E. (2013). The Judgment test of the Neuropsychological Assessment Battery (NAB): Psychometric considerations in an assisted-living sample. Clinical Neuropsychology, 27, 827 – 839. First citation in articleCrossrefGoogle Scholar

  • Maricle, D. E., & Avirett, E. (2012). The role of cognitive and intelligence tests in the assessment of executive functions. In D. P. FlanaganP. L. HarrisonEds., Contemporary intellectual assessment: Theories, tests, and issues (3rd ed., pp. 820 – 838). New York: Guilford. First citation in articleGoogle Scholar

  • Miller, D. C., & Maricle, D. E. (2012). The emergence of neuropsychological constructs into tests of intelligence and cogntitive abilities. In D. P. FlanaganP. L. HarrisonEds., Contemporary intellectual assessment: Theories, tests and issues (3rd ed., pp. 800 – 819). New York: Guilford. First citation in articleGoogle Scholar

  • Miyake, A., Emerson, M. J., & Friedman, N. P. (2000). Assessment of executive functions in clinical settings: problems and recommendations. Seminars in speech and language, 21, 169 – 183. First citation in articleCrossrefGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ”frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49 – 100. First citation in articleCrossrefGoogle Scholar

  • Molnar, A. E. (2013). Shared and unique relations between executive function and fluid and crystallized intelligence constructs in an undergraduate sample. Poster presented at the AACN Scientific Poster Session. The Clinical Neuropsychologist, 27, 539 – 646. First citation in articleGoogle Scholar

  • Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313 – 324. First citation in articleCrossrefGoogle Scholar

  • O’Donnell, L. (2009). The Wechsler Intelligence Scale for Children – Fourth Edition. In J. A. NaglieriS. GoldsteinEds., Practitioner’s guide to assessing intelligence and achievement. Hoboken, NJ: Wiley. First citation in articleGoogle Scholar

  • Obonsawin, M. C., Crawford, J. R., Page, J., Chalmers, P., Cochrane, R., & Low, G. (2002). Performance on tests of frontal lobe function reflect general intellectual ability. Neuropsychologia, 40, 970 – 977. First citation in articleCrossrefGoogle Scholar

  • Passingham, R. (1993). The frontal lobes and voluntary action. Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Petermann, F. (Hrsg.). (2012). Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV). Deutschsprachige Adaptation der WAIS-IV von D. Wechsler. Frankfurt/M.: Pearson Assessment. First citation in articleGoogle Scholar

  • Petermann, F., Jäncke, L., & Waldmann, H. C. (Hrsg.). (2016). The Neuropsychological Assessment Battery (NAB). Deutschsprachige Adaptation. Bern: Hogrefe. First citation in articleGoogle Scholar

  • Rabbitt, P. (1997). Introduction: Methodologies and models in the study of executive function. In P. RabbittEds., Methodology of frontal and executive function (pp. 1 – 38). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Rabbitt, P., & Lowe, C. (2000). Patterns of cognitive ageing. Psychological Research, 63, 308 – 316. First citation in articleCrossrefGoogle Scholar

  • Rabin, L. A., Borgos, M. J., & Saykin, A. J. (2008). A survey of neuropsychologists’ practices and perspectives regarding the assessment of judgment ability. Applied Neuropsychology, 15, 264 – 273. First citation in articleCrossrefGoogle Scholar

  • Redick, T. S., Unsworth, N., Kelly, A. J., & Engle, R. W. (2012). Faster, smarter? Working memory capacity and perceptual speed in relation to fluid intelligence. Journal of Cognitive Psychology, 24, 844 – 854. First citation in articleCrossrefGoogle Scholar

  • Roca, M., Manes, F., Chade, A., Gleichgerrcht, E., Gershanik, O., Arevalo, G. G., & … Duncan, J. (2012). The relationship between executive functions and fluid intelligence in Parkinson’s disease. Psychological Medicine, 42, 2445 – 2452. First citation in articleCrossrefGoogle Scholar

  • Roca, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., & Antoun, N.et al. (2010). Executive function and fluid intelligence after frontal lobe lesions. Brain, 133, 234 – 247. First citation in articleCrossrefGoogle Scholar

  • Rohwedder, S., & Willis, R. J. (2010). Mental retirement. The Journal of Economic Perspectives, 24, 119 – 138. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A. (2004). Localizing age-related individual differences in a hierarchical structure. Intelligence, 32, 541 – 561. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19, 532 – 545. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A. (2010). Relations between age and cognitive functioning. In T. A. SalthouseEd., Major issues in cognitive aging (pp. 3 – 34). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Salthouse, T. A., Atkinson, T. M., & Berish, D. E. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132, 566 – 594. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A., & Davis, H. (2006). Organization of cognitive abilities and neuropsychological variables across the lifespan. Developmental Review, 26, 31 – 54. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A., & Pink, J. E. (2008). Why is working memory related to fluid intelligence? Psychonomic Bulletin & Review, 15, 364 – 371. First citation in articleCrossrefGoogle Scholar

  • Schaie, K. W., & Willis, S. L. (2010). The Seattle Longitudinal Study of Adult Cognitive Development. ISSBD Bulletin, 57, 24 – 29. First citation in articleGoogle Scholar

  • Spearman, C. (1904). “General Intelligence,” objectively determined and measured. The American Journal of Psychology, 15, 201 – 292. First citation in articleCrossrefGoogle Scholar

  • Stern, R. A., & White, T. (2003a). The Neuropsychological Assessment Battery (NAB). Lutz, FL: Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Stern, R. A., & White, T. (2003b). The Neuropsychological Assessment Battery (NAB). Administration, scoring, and interpretation manual. Lutz, FL: Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Tucker-Drob, E. M., & Salthouse, T. A. (2008). Adult age trends in the relations among cognitive abilities. Psychology and Aging, 23, 453 – 460. First citation in articleCrossrefGoogle Scholar

  • van Aken, L., Kessels, R. P., Wingbermuhle, E., van der Veld, W. M., & Egger, J. I. (2016). Fluid intelligence and executive functioning more alike than different? Acta Neuropsychiatrica, 28, 31 – 37. First citation in articleCrossrefGoogle Scholar

  • van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427 – 449. First citation in articleCrossrefGoogle Scholar

  • Verhaeghen, P., & Salthouse, T. A. (1997). Meta-analyses of age-cognition relations in adulthood: Estimates of linear and nonlinear age effects and structural models. Psychological Bulletin, 122, 231 – 249. First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised. New York: Psychological Corporation. First citation in articleGoogle Scholar

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale – Third Edition (WAIS-III). San Antonio, TX: Psychological Corportion. First citation in articleGoogle Scholar

  • Wechsler, D. (2008). Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV). San Antonio, TX: Pearson. First citation in articleGoogle Scholar

  • Wisdom, N. M., Mignogna, J., & Collins, R. L. (2012). Variability in Wechsler Adult Intelligence Scale-IV subtest performance across age. Archives of Clinical Neuropsychology, 27, 389 – 397. First citation in articleCrossrefGoogle Scholar

  • Wongupparaj, P., Kumari, V., & Morris, R. G. (2015). The relation between a multicomponent working memory and intelligence: The roles of central executive and short-term storage functions. Intelligence, 53, 166 – 180. First citation in articleCrossrefGoogle Scholar