Skip to main content
Empirische Arbeit

Neurokognitive Grundlagen der typischen und atypischen Zahlenverarbeitung

Published Online:https://doi.org/10.1024/2235-0977/a000015

Zusammenfassung: Numerische Kenntnisse bilden ein wichtiges Fundament für die schulische und berufliche Entwicklung. Viele Kinder leiden jedoch unter großen Schwierigkeiten beim Erlernen numerischer Kompetenzen und werden oft mit einer «entwicklungsbedingten Dyskalkulie» diagnostiziert. Eine wachsende Anzahl von Studien mit Hilfe bildgebender Verfahren zeigt nun, dass spezifische Regionen im Gehirn von Kindern mit Dyskalkulie einen atypischen Entwicklungsverlauf beim Erlernen basisnumerischer Kompetenzen – wie dem Vergleichen numerischer Mengen – aufweisen. Diese Studien deuten somit auf eine domänenspezifische Ursache der Rechenschwäche hin. In der vorliegenden Übersichtsarbeit möchten wir die Befunde zur typischen und atypischen Gehirnentwicklung der Zahlenverarbeitung von einer neurowissenschaftlichen Perspektive diskutieren. Weiters werden wichtige Implikationen für Diagnostik und Intervention besprochen.


Extended abstract

Neurocognitive Foundations of Typical and Atypical Number Development

Background: The acquisition of basic mathematical abilities represents an essential component of leading a successful and healthy life in modern societies. While the majority of children are able to learn basic numerical concepts rather effortlessly, some children display severe difficulties in acquiring basic number skills (such as being able to rapidly retrieve the answers to basic arithmetic problems). Children with persistent difficulties in basic numerical processing in concert with otherwise relatively normal verbal and non-verbal intelligence are referred to as children with ’Developmental Dyscalculia’ (DD). In comparison to the vast amount of literature on ’Developmental Dyslexia’, which is a specific developmental difficulty in acquiring reading skills, little is know about the causes of DD. Notwithstanding, recent technological and methodological advances in imaging the human brain – such as functional Magnetic Resonance Imaging (fMRI) – have fostered a new line of research that seeks to understand the brain mechanisms associated with the typical and atypical development of numerical competencies. These new insights point to potential causal, neurobiological factors in DD and pave the way towards new investigations of the typical and atypical developmental trajectories of number development through the combined use of behavioral and neuroimaging methods.

Aims: Against this background, the main purpose of the present paper is to provide an accessible introduction and review of the state-of-the-art understanding of the neural correlates associated with both typical and atypical number development. In view of this the review will also assess the utility of a cognitive neuroscience approach to better understand how children both succeed and fail at acquiring numerical and mathematical skills.

Methods: To achieve these objectives, the presented paper reviews and critically discusses empirical investigations with both adults and children that have used functional and structural Magnetic Resonance Imaging (MRI) and/or event-related potential (ERP) to investigate the neural basis of basic numerical abilities, such as estimating and comparing numerical magnitudes. More specifically, an overview of the present empirical evidence from studies with adults suggests that the intraparietal sulcus (IPS) within the parietal lobe is a key structure for representing and processing numerical magnitudes. Having presented the neural correlates of numerical magnitude processing in adults, we will move on to discussing a growing body of research that has investigated the typical development of numerical processing in the child’s brain. This review will discuss studies with children and adults that have investigated to which extent the neural mechanisms underlying numerical processing change over the course of learning and development.

Results: The data of this developmental research suggests that the brain activation within the IPS during numerical magnitude processing tasks (such as number comparison) increases over developmental time. However, not only does activation within the IPS increase over the course of development, but furthermore, it has been found that activation in frontal areas – which are commonly associated with executive functions, cognitive control and working memory – decreases with age. Convergent with these developmental changes in brain activation researcher have recently suggested that the brain undergoes an ontogenetic specialization for representing numerical magnitudes within the IPS. This process of ontogenetic specialization reflects an increasingly fluent processing of numerical magnitudes within the IPS, which requires less augmentation by prefrontal resources that are engaged when number processing is effortful and immature. Having reviewed the literature on the neural correlates of number processing in typically developing adults and children, the review will examine the extent to which the present literature suggests that brain function and brain structure in children with DD differs from brain function and brain structure in children without DD. Consistent with the hypothesis that DD is characterized by atypical activation of the IPS, we will review a series of studies that have shown that children with DD activate their IPS differently than their typically developing peers (though studies differ on whether more or less activation is exhibited by children with DD relative to their typical developing peers). These data suggest that children with DD may fail to specialize the IPS for basic number processing in the typical way, which deprives them of a crucial scaffold (fluent processing of numerical magnitude) to develop efficient, higher-level mathematical skills. In addition to a possible functional deficit within the IPS, a reduction in gray matter volume in children with DD has been found in areas in and around the IPS and thus both the structural and functional neuroanatomy of DD will be considered in this paper.

Discussion: Taken together, neuroscientific evidence suggests that the IPS – a structure that has been shown to be critical for basic numerical magnitude processing in adults and typically developing children – displays an atypical functional and structural development in children with DD. Thus it is plausible to argue that difficulties in mathematical competences may be associated with a deficit in representing numerical magnitudes within the IPS. These neuroscientific findings are consistent with a growing body of studies that suggest that, at least in part, the deficits that children with DD have in mental arithmetic are driven by their weaknesses in processing and representing numerical magnitude. In other words, early-developing, low-level numerical magnitude processing skills constrain the acquisition of higher-level calculation abilities. Much of the early work on atypical and typical number development was focused on mental arithmetic and the domain-general factors (such as working memory and speed of processing). While such work is undoubtedly important and will continue to constrain our understanding, the relatively more recent work, using both traditional methods from cognitive psychology and novel tools from cognitive neuroscience, is adding a new perspective to research on the ontogeny of typical and atypical number skills.

The paper concludes with a discussion of the potential implication of the cognitive neuroscience approach to the study of typical and atypical number development for the design and implementation of new diagnostic/screening tools and early intervention for children who might be at risk of developing DD.

Literatur

  • American Psychiatric Association (APA) (1980). DSM-III – Diagnostic and Statistical Manual of Mental Disorders. 2nd Edition. Washington, DC: APA. First citation in articleGoogle Scholar

  • Ansari, D. , Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18, 1820– 1828. First citation in articleCrossrefGoogle Scholar

  • Ansari, D. , Dhital, B. , Siong, S. C. (2006). Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes. Brain Research, 1067, 181– 188. First citation in articleCrossrefGoogle Scholar

  • Ansari, D. , Garcia, N. , Lucas, E. , Hamon, K. , Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. Neuroreport, 16, 1769– 1773. First citation in articleCrossrefGoogle Scholar

  • Bugden, S. , Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118, 32– 44. First citation in articleCrossrefGoogle Scholar

  • Butterworth, B. , Varma, S. , Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332, (6033) 1049– 1053. First citation in articleCrossrefGoogle Scholar

  • Cantlon, J. F. , Brannon, E. M. , Carter, E. J. , Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4, e125. First citation in articleGoogle Scholar

  • Cohn, R. (1968). Developmental dyscalculia. Pediatric Clinics of North America, 15, 651– 668. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1– 42. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive factors methods. Journal of Cognitive Neuroscience, 8, 47– 68. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. , Piazza, M. , Pinel, P. , Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20 (3 – 6), 487– 506. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7, 145– 147. First citation in articleCrossrefGoogle Scholar

  • Duncan, G. J. , Dowsett, C. J. , Claessens, A. , Magnuson, K. , Huston, A. C. , Klebanov, P. et al. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428– 1446. First citation in articleCrossrefGoogle Scholar

  • Gabrieli, J. D. (2009). Dyslexia: a new synergy between education and cognitive neuroscience. Science, 325, 280– 283. First citation in articleCrossrefGoogle Scholar

  • Gallistel, C. R. , Gelman, I. I. (2000). Non-verbal numerical cognition: from reals to integers. Trends in Cognitive Sciences, 4, 59– 65. First citation in articleCrossrefGoogle Scholar

  • Gersten, R. , Clarke, B. , Mazzocco, M. (2007). Historical and contemporary perspectives on mathematical learning disabilities. In D. B. Berch & M. Mazzocco (Eds.), Why is Math So Hard for Some Children? The Nature and Origins of Mathematical Learning Difficulities and Disabilities. Baltimore: Paul H. Brookes Publishing Co. First citation in articleGoogle Scholar

  • Gobel, S. M. , Johansen-Berg, H. , Behrens, T. , Rushworth, M. F. (2004). Response-selection-related parietal activation during number comparison. Journal of Cognitive Neuroscience, 16, 1536– 1551. First citation in articleGoogle Scholar

  • Grune, K. , Mecklinger, A. , Ullsperger, P. (1993). Mental comparison: P300 component of the ERP reflects the symbolic distance effect. Neuroreport, 4, 1272– 1274. First citation in articleCrossrefGoogle Scholar

  • Halberda, J. , Mazzocco, M. M. , Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665– 668. First citation in articleCrossrefGoogle Scholar

  • Henschen, S. E. (1919). Über Sprach-, Musik- und Rechenmechanismen und ihre Lokalisation im Grosshirn. Zeitschrift für die gesamte Neurologie und Psychiatrie, 52, 273– 289. First citation in articleCrossrefGoogle Scholar

  • Holloway, I. D. , Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17– 29. First citation in articleCrossrefGoogle Scholar

  • Houde, O. , Rossi, S. , Lubin, A. , Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13, 876– 885. First citation in articleGoogle Scholar

  • Hyde, D. C. , Boas, D. A. , Blair, C. , Carey, S. (2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. Neuroimage, 53, 647– 652. First citation in articleCrossrefGoogle Scholar

  • Isaacs, E. B. , Edmonds, C. J. , Lucas, A. , Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: a neural correlate. Brain, 124, 1701– 1707. First citation in articleCrossrefGoogle Scholar

  • Izard, V. , Dehaene-Lambertz, G. , Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biology, 6, e11. First citation in articleGoogle Scholar

  • Kaufmann, L. , Koppelstaetter, F. , Siedentopf, C. , Haala, I. , Haberlandt, E. , Zimmerhackl, L. B.et al. (2006). Neural correlates of the number-size interference task in children. Neuroreport, 17, 587– 591. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Vogel, S. E. , Starke, M. , Kremser, C. , Schocke, M. , Wood, G. (2009). Developmental dyscalculia: Compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. Behavioral and Brain Functions, 5, 35. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Wood, G. , Rubinsten, O. , Henik, A. (2011). Meta-Analyses of Developmental fMRI Studies Investigating Typical and Atypical Trajectories of Number Processing and Calculation. Developmental Neuropsychology, 36, 763– 787. First citation in articleCrossrefGoogle Scholar

  • Klein, N. K. , Hack, M. , Breslau, N. (1989). Children who were very low birth weight: development and academic achievement at nine years of age. Journal of Developmental & Behavioral Pediatrics, 10, 32– 37. First citation in articleCrossrefGoogle Scholar

  • Krajewski, K. , Nieding, G. , Schneider, W. (2008). Kurz- und langfristige Effekte mathematischer Frühförderung im Kindergarten durch das Programm. «Mengen, zählen, Zahlen» Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 40, 135– 146. First citation in articleLinkGoogle Scholar

  • Kucian, K. , Loenneker, T. , Martin, E. , von Aster, M. (2011). Non-symbolic numerical distance effect in children with and without developmental dyscalculia: a parametric fMRI study. Developmental Neuropsycholgy, 36, 741– 762. First citation in articleCrossrefGoogle Scholar

  • Kucian, K. , Loenneker, T. , Dietrich, T. , Dosch, M. , Martin, E. , von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2, 31. First citation in articleCrossrefGoogle Scholar

  • Kucian, K. , Kaufmann, L. (2009). A developmental model of number representations. Behavioral and Brain Sciences, 32, 340– 341. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Kaufmann, L. (2008). Dyskalkulie. München: Ernst Reinhardt Verlag. First citation in articleGoogle Scholar

  • Lewandowsky, M. , Stadelmann, E. (1908). Über einen bemerkenswerten Fall von Hirnblutungen und über Rechenstörungen bei Herderkrankungen des Gehirns. Journal für Psychologie und Neurologie, 11, 249– 265. First citation in articleGoogle Scholar

  • Molko, N. , Cachia, A. , Riviere, D. , Mangin, J. F. , Bruandet, M. , Le Bihan, D.et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847– 858. First citation in articleCrossrefGoogle Scholar

  • Moyer, R. S. , Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519– 1520. First citation in articleCrossrefGoogle Scholar

  • Mussolin, C. , De Volder, A. , Grandin, C. , Schlogel, X. , Nassogne, M. C. , Noel, M. P. (2009). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22, 860– 874. First citation in articleCrossrefGoogle Scholar

  • Notebaert, K. , Nelis, S. , Reynvoet, B. (2011). The magnitude representation of small and large symbolic numbers in the left and right hemisphere: an event-related fMRI study. Journal of Cognitive Neuroscience, 23, 622– 630. First citation in articleCrossrefGoogle Scholar

  • Parsons, S. , Bynner, J. (2005). Does numeracy matter more?. London: NRDCo. First citation in articleGoogle Scholar

  • Piazza, M. , Izard, V. , Pinel, P. , Le Bihan, D. , Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547– 555. First citation in articleCrossrefGoogle Scholar

  • Piazza, M. , Pinel, P. , Le Bihan, D. , Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293– 305. First citation in articleCrossrefGoogle Scholar

  • Pinel, P. , Dehaene, S. , Riviere, D. , LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013– 1026. First citation in articleCrossrefGoogle Scholar

  • Pinel, P. , Le Clec, H. G. , van de Moortele, P. F. , Naccache, L. , Le Bihan, D. , Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit for number comparison. Neuroreport, 10, 1473– 1479.. First citation in articleCrossrefGoogle Scholar

  • Price, G. R. , Holloway, I. , Rasanen, P. , Vesterinen, M. , Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17, R1042– 1043. First citation in articleGoogle Scholar

  • Rotzer, S. , Kucian, K. , Martin, E. , von Aster, M. , Klaver, P. , Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage, 39, 417– 422. First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S. (2007). Prevalence of Developmental Dyscalculia. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? Baltimore, MD: Brookes Publishing. First citation in articleGoogle Scholar

  • Soltesz, F. , Szucs, D. , Dekany, J. , Markus, A. , Csepe, V. (2007). A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neuroscience Letters, 417, 181– 186. First citation in articleGoogle Scholar

  • Wilson, A. J. , Dehaene, S. , Pinel, P. , Revkin, S. K. , Cohen, L. , Cohen, D. (2006). Principles underlying the design of “the number race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 19. First citation in articleCrossrefGoogle Scholar

  • Xu, F. , Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1– B11. First citation in articleGoogle Scholar

  • Xu, F. , Spelke, E. S. , Goddard, S. (2005). Number sense in human infants. Developmental Science, 8, 88– 101. First citation in articleCrossrefGoogle Scholar