Skip to main content
Published Online:https://doi.org/10.1026//0044-3409.208.12.129

Zusammenfassung:1864 hatte der deutsche Biologe von Baer den Gedanken eines “Psychologischen Moments”, verstanden als kleinste Zeiteinheit psychischen Geschehens, eingeführt. Aufbauend auf von Baer schlug in unserem Jahrhundert Brecher (1932) als Dauer des Moments einen Wert von 55,5 ms vor. Békésy hat 1936 für Infraschall die Existenz einer ganzen Kaskade von Diskontinuitäten nachweisen können, die sich in regulärer Weise um diesen Wert gruppieren. Später wurden ähnliche quantenhafte Strukturen auch innerhalb anderer Paradigmen gefunden. In einer Serie von Arbeiten (bes. Geissler, 1987, 1992) haben wir gezeigt, daß Ansätze, die in Entsprechung zu einem zentralen Zeitgeber lediglich eine Hauptbezugsperiode annehmen (z. B. Stroud, 1956), von der sich alle anderen Perioden als Harmonische oder Subharmonische ableiten, nicht richtig sein können. Um die gefundenen Strukturen darstellen zu können, muß vielmehr eine in Zeitbereiche gegliederte zeitliche Architektur angenommen werden. Zeitbereiche werden nach dem vorgeschlagenen “Zeitquantenansatz” TQM durch die Annahme von drei gleichzeitig gültigen fundamentalen Bindungen bestimmt: (1) zu einem Bereich Rq gehörige Perioden sind jeweils ganzahlige Mehrfache N einer bereichsspezifischen kürzesten Periode Tq; (2) es existiert ein Vielfaches M = 30 von Tq der Bedeutung einer oberen Schranke des entsprechenden Bereichs, und (3) die kürzeste Periode Tq in einem beliebigen Bereich ist ein ganzzahliges Vielfaches einer absolut kürzesten kognitionsrelevanten Periode von ca. 4,5 ms Dauer, dem sog. Zeitquantum. Für die kleinsten denkbaren Bereiche R1 und R2, mit den vorausgesagten Obergrenzen bei 30 × 4.5 = 135 ms bzw. 30 × 9 = 270 ms, konnten diese Annahmen in Experimenten bestätigt werden. Unterstützende Ergebnisse anderer Forscher unter Bezug auf andere Paradigmen werden referiert. Es wird die Vermutung begründet, daß eine Beziehung zwischen Grundparametern des TQM Ansatzes und von Teghtsoonian (1971) entdeckten psychophysikalischen Invarianzen besteht. In einer kurzen Darstellung einer physiologischen Modellinterpretation von TQM wird auf der Grundlage von Verhaltensdaten die Annahme einer direkten Entsprechung zwischen bestimmten Zeitbereichen und Bändern relevanter Anteile von EEG-Aktivität diskutiert, deren Ausdehnung mit klassischen Definitionen kompatibel ist.


Processing of Time - Processing Time: Temporal Invariants and Oscillatory Mechanisms in Perception and Memory

Summary: In 1864, the German biologist von Baer advanced the idea of a psychological moment defined as the smallest unit of mental time. In our century, building upon this notion, Brecher (1932) suggested for it a duration of 55.5 msec from threshold measurements in tactile vibration which practically showed no dependence on receptor density and no individual variation. Von Békésy (1936), referring to Brecher, demonstrated for low frequency sound a cascade of discontinuities to exist regularly spaced around this value. Later similar quantal structures were found within other paradigms. In a series of papers (cf. Geissler, 1987, 1992) we have shown that approaches (e.g. of Stroud, 1956) assuming merely one reference period corresponding to one central pacemaker to which other periods are harmonically related must be invalid. Instead, to account for general patterns of results a temporal range architecture is to be assumed. Temporal ranges according to the proposed taxonomic quantum approach, TQM, are simultaneously subject to three fundamental constraints: (1) Any periods within a given range Rq are integer multiples N of a shortest period Tq characteristic of it; (2) there is an integer multiple M = 30 of Tq representing the upper bound of periods included in a range, and (3) any shortest period within a given range is an integer multiple of an absolutely shortest period TQ0 relevant in cognition of about 4.5 msec duration, the “time quantum”. For the smallest of the assumed ranges R1 and R2 extending up to about 30 × 4.5 = 135 msec and 30 × 9 = 270 msec, respectively, these claims were corroborated in experiments. Supporting evidence from other researchers and paradigms is presented. We assert that the basic constants of TQM are related to psychophysical invariance properties as discovered by Teghtsoonian (1971). In a brief outline of a physiological interpretation of the TQM approach we suggest a fairly direct correspondence between ranges of behaviorally determined periods and bands in which the relevant portions of EEG activity are organized in a way compatible with classical band definitions.

Literatur

  • Allan, L. G. , Kristofferson, A. B. (1974). Judgments about the duration of brief stimuli. Perception & Psychophysics, 15 , 327– 334 First citation in articleGoogle Scholar

  • Allport, D. A. (1968). Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 59 , 365– 406 First citation in articleCrossrefGoogle Scholar

  • Baer, K. V. von (1864). Welche Auffassung der lebendigen Natur ist die richtige? Und wie ist diese Auffassung auf die Entomologie anzuwenden?. In Schmitzdorf, H. (Ed.), Reden, gehalten in wissenschaftlichen Versammlungen, und kleine Aufsätze vermischten Inhalts, 237-283. St. Petersburg: Verlag der Kaiserlichen Hofbuchhandlung First citation in articleGoogle Scholar

  • Basar, E. , Hari, R. , Lopes da Silva, F. H. , Schürmann, M. (1997). Brain Alpha Activity and Functional Correlates. International Journal of Psychophysiology, Special Issue 26 First citation in articleGoogle Scholar

  • Békésy, G. von (1936). Über die Hörschwelle und Fühlgrenze langsamer sinusförmiger Luftdruckschwankungen. Annalen der Physik, 26 , 5 554– 556 First citation in articleCrossrefGoogle Scholar

  • Buzsáki, G. , Llinás , Singer, W. , Berthoz, A. , Christen, Y. (1994). Temporal coding in the brain . Berlin a.o.: Springer-Verlag First citation in articleCrossrefGoogle Scholar

  • Brecher, G. A. (1932). Die Entstehung und biologische Bedeutung der subjektiven Zeiteinheit, - des Moments. Zeitschrift für vergleichende Physiologie, 18 , 204– 243 First citation in articleGoogle Scholar

  • Block, R. A. (1990). Model of psychological time. In Block, R. A. (Ed.), Cognitive Models of Psychological Time, 1-58. Hillsdale, NJ: Erlbaum Ass First citation in articleGoogle Scholar

  • Bredenkamp, J. (1993). Die Verknüpfung verschiedener Invarianzhypothesen im Bereich der Gedächtnispsychologie. Zeitschrift für Experimentelle und Angewandte Psychologie, XI , 3 368– 385 First citation in articleGoogle Scholar

  • Bredenkamp, J. , Klein, K.-M. (1997). Experimental tests of four invariance hypotheses in the field of psychology of learning and memory. European Journal of Cognitive Psychology, unveröffentl. Manuskript First citation in articleGoogle Scholar

  • Brysbaert, M. (1994). Behavioral estimates of interhemispheric transmission time and the signal detection method: A reappraisal. Perception & Psychophysics, 1994 56 , 4 479– 490 First citation in articleCrossrefGoogle Scholar

  • Buffart, H. , Geissler, H.-G. (1984). Task-dependent representation categories and memoryguided inference during classification. In: E. Degreef and J. van Buggenhaut (Eds.), Trends in Mathematical Psychology, North-Holland, Amsterdam a. o., 33-58 First citation in articleGoogle Scholar

  • Buzsaki, G. , Horváth, Z. , Urioste, R. , Wise, K. (1992). High-frequency network oscillations in the hippocampus. Science, 256 , 1025– 1025 First citation in articleCrossrefGoogle Scholar

  • Cavanagh, J. P. (1972). Relation between immediate memory span and the memory search rate. Psychological Review, 79 , 525– 530 First citation in articleCrossrefGoogle Scholar

  • Donders, F. C. (1868). Die Schnelligkeit psychischer Prozesse. Archiv für Anatomie, Physiologie, und wissenschaftliche Medicin, Jahrgang 1868 657– 681 First citation in articleGoogle Scholar

  • Dehaene, S. (1993). Temporal oscillations in human perception. Psychological Science, 4/4 , 264– 269 First citation in articleCrossrefGoogle Scholar

  • Eckhorn, R. , Bauer, R. , Jordan, W. , Brosch, M. , Kruse, W. , Munk, M. , Reitboeck, H. J. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex?. Biological Cybernetics, 60 , 121– 130 First citation in articleCrossrefGoogle Scholar

  • Elliott, M. A. , Müller, H. J. (1998 a). Synchronous information presented in 40 Hz flicker enhances visual feature binding. Psychological Science, 9 , 277– 283 First citation in articleCrossrefGoogle Scholar

  • Elliott, M. A. , Müller, H. J. (1998 b). Evidence for a 40 Hz oscillatory short-term visual memory revealed by human reaction time measurements. Science, (submitted) First citation in articleGoogle Scholar

  • Fabiani, M. , Schmer, H. , Tait, C. , Gafni, M. , Kinarti, R. (1979). A functional measure of brain activity: brain stem transmission time. Electroencephalography and Clinical Neurophysiology, 47 , 483– 491 First citation in articleCrossrefGoogle Scholar

  • Fechner, G. Th. (1860). Elemente der Psychophysik, Bd. 2. Leipzig: Breitkopf und Haertel First citation in articleGoogle Scholar

  • Freeman, W. J. (1964). A linear distributed feedback model for prepyriform cortex. Experimental Neurology, 10 , 525– 547 First citation in articleCrossrefGoogle Scholar

  • Freeman, W. J. (1972). Measurement of open-loop responses to electrical stimulation in olfactory bulb of cat. Journal of Neurophysiology, 35 , 745– 761 First citation in articleGoogle Scholar

  • Freeman, W. J. (1974). Stability characteristics of positive feedback in aneural population. Trans. IEEE Biomedical Engineering, 21 , 358– 364 First citation in articleCrossrefGoogle Scholar

  • Garner, W. R. , Clement, D. E. (1963). Goodness of pattern and pattern uncertainty. Journal of Verbal Learning and Verbal Behavior, 2 , 446– 456 First citation in articleCrossrefGoogle Scholar

  • Geissler, H.-G. (1983). The inferential basis of classification: From perceptual to memory code systems. Part 1 (Theory). In Geissler, H.-G. (Ed.), Buffart, H. F. J. M., Leeuwenberg, E. L. J. & Sarris, V. (Co-Eds.), Modern Issues in Perception, 87-105. Amsterdam a. o.: North Holland First citation in articleGoogle Scholar

  • Geissler, H.-G. (1985). Sources of seeming redundancy in temporally quantized information processing. In G. d'Ydewalle (Ed.), Cognitive information processing and motivation. Selected/revised papers of the 23rd International Congress of Psychology, Vol. 3, 119-228. Amsterdam: North-Holland First citation in articleGoogle Scholar

  • Geissler, H.-G. (1987). The temporal structure of central information processing: Evidence for a tentative time-quantum model. Psychological Research, 49 , 2/3 99– 106 First citation in articleCrossrefGoogle Scholar

  • Geissler, H.-G. (1990). Foundations of quantized processing. In H.-G. Geissler (Ed.), in collaboration with M. H. Müller and W. Prinz, Psychophysical Explorations of Mental Structures, 193-210. Toronto: Hogrefe & Huber First citation in articleGoogle Scholar

  • Geissler, H.-G. (1991). Zeitcodekonstanten - ein Bindeglied zwischen Psychologie und Physiologie bei der Erforschung kognitiver Prozesse? Hypothesen und Überlegungen zu Quantenstrukturen in der Alpha-Aktivität des Gehirns. Zeitschrift für Psychologie, 199 , 2 121– 143 First citation in articleGoogle Scholar

  • Geissler, H.-G. (1992). New magic numbers in mental activity? On a taxonomic system for critical time periods. In H.-G. Geissler, S. W. Link and J. T. Townsend (Eds.), Cognition, Information Processing and Psychophysics, 293-322. Hillsdale: Erlbaum Associates First citation in articleGoogle Scholar

  • Geissler, H.-G. (1995). Beziehungserkennung und interne Suche - zur Architektur und einem besonderen Fall struktureller Erkennung. In Pawlik, K. (Ed.),Bericht über den 39. Kongreß der Deutschen Gesellschaft für Psychologie, 570-575. Göttingen: Hogrefe First citation in articleGoogle Scholar

  • Geissler, H.-G. (1997). Is there a Way from Behavior to Nonlinear Brain Dynamics? On Quantal Periods in Cognition and the Place of Alpha in Brain Resonances. International Journal of Psychophysiology, Special Issue 26 381– 393 First citation in articleGoogle Scholar

  • Geissler, H.-G. , Buffart, H. (1985). Task-dependency and quantized processing in classification. In d'Ydewalle (Ed.), Cognitive Information Processing and Motivation, 277-294. Amsterdam: North-Holland First citation in articleGoogle Scholar

  • Geissler, H.-G. , Lachmann, Th. (1996). Memory-guided inference in matching tasks: Symmetry and the case of inferred sets. Fechner Day. Proceedings of the Twelfth Annual Meeting of the International Society of Psychophysics, 119-124, Padua 1996 First citation in articleGoogle Scholar

  • Geissler, H.-G. , Lachmann, Th. (1997). Processing spatial symmetry: Evidence of two distinct components in visual comparison. Proceedings of the 13th Annual Meeting of the International Society of Psychophysics, 165-170. Poznan First citation in articleGoogle Scholar

  • Geissler, H.-G. , Schebera, F.-U. , Kompass, R. (1999). Ultra-precise quantal timing: Evidence from simultaneity thresholds in long-range apparent movement. Perception & Psychophysics, 61 , 4 707– 726 First citation in articleCrossrefGoogle Scholar

  • Gibbon, J. (1991). Origins of scalar timing. Learning and Motivation, 3-38 First citation in articleGoogle Scholar

  • Gray, C. M , König, P. , Engel, A. K. , Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflect global stimulus properties. Nature, 338 , 334– 337 First citation in articleCrossrefGoogle Scholar

  • Hendrickson, A. E. (1972). An integrated molar/molecular model of the brain. Psychological Reports, 30 , 343– 368 First citation in articleCrossrefGoogle Scholar

  • Hendrickson, D. E. , Hendrickson, A. E. (1980). The biological basis of individual differences in intelligence. Personality and Individual Differences, 1 , 3– 33 First citation in articleCrossrefGoogle Scholar

  • Herrmann, C. , Pfeifer, E. , Mecklinger, A. (1998). Gamma Oscillations During Perception of Illusory Contours . (Manuscript submitted) First citation in articleGoogle Scholar

  • Lachmann, Th. (1998). Repräsentationsgeleitete Suchprozesse bei der visuellen Relationserkennung. Dissertation, Universität Leipzig First citation in articleGoogle Scholar

  • Jensen, O. (1998). Oscillatory Short-term Memory Models. Dissertation, Brandeis University First citation in articleGoogle Scholar

  • Jensen, O. , Gelfand, J. , Kounios, J. , Lisman, J. E. (1998). 10-12 Hz oscillations increase with memory load in a short-term memory task. Internet Note First citation in articleGoogle Scholar

  • Jokeit, H. (1990). Analysis of periodicities in human reaction times. Naturwissenschaften, 77 , 289– 291 First citation in articleCrossrefGoogle Scholar

  • Jürgens, E. , Rösler, F. , Hennighausen, E. , Heil, M. (1995). Stimulus-induced gamma oscillations: Harmonics of alpha activity?. Neuro Report, 6 , 813– 816 First citation in articleGoogle Scholar

  • Killeen, P. R. , Weiss, N. A (1987). Optimal Timing and the Weber Function. Psychological Review, 1987 94 , No. 4 455– 468 First citation in articleCrossrefGoogle Scholar

  • Klix, F. , Hoffmann, J. (1978). The method of sentence-picture comparison as a possibility for analyzing the representation of meaning in human long-term memory. In F. Klix (Ed.), Human and Artificial Intelligence, 171-192. Berlin: Deutscher Verlag der Wissenschaften First citation in articleGoogle Scholar

  • Klix, F. , van der Meer, Elke (1978). Analogical reasoning - an approach to mechanisms underlying human intelligence performances. In F. Klix (Ed.), Human and Artificial Intelligence, 193-212. Berlin: Deutscher Verlag der Wissenschaften First citation in articleGoogle Scholar

  • Koth, A. (1987). Periodizitäten in Reaktionszeitverteilungen und Kippzeiten mehrdeutiger Bilder. Unveröffentl. Diplomarbeit, Sektion Psychologie der Universität Leipzig First citation in articleGoogle Scholar

  • Kristofferson, A. B. (1967). Successiveness discrimination as a two-state, quantal process. Science, 158 , 1337– 1339 First citation in articleCrossrefGoogle Scholar

  • Kristofferson, A. B. (1977). A real-time criterion theory of duration discrimination. Perception & Psychophysics, 21 , 2 105– 117 First citation in articleCrossrefGoogle Scholar

  • Kristofferson, A. B. (1980). A quantal step function in duration discrimination. Perception & Psychophysics, 27 , 300– 306 First citation in articleCrossrefGoogle Scholar

  • Kristofferson, A. B. (1990). Timing mechanisms and the threshold for duration. In Geissler, H.-G. (Ed.) in collaboration with M. H. Müller and W. Prinz, Psychophysical Explorations of Mental Structures, 269-277. Toronto a.o.: Hogrefe & Huber First citation in articleGoogle Scholar

  • Kristofferson, M. W. (1972). Effects of practice on character-classification performance. Canadian Journal of Psychology, 26 , 540– 560 First citation in articleCrossrefGoogle Scholar

  • Latour, P. L. (1967). Evidence of internal clocks in the human operator. Acta Psychologica, 27 , 93– 100 341– 348 First citation in articleCrossrefGoogle Scholar

  • Lebedev, A. N. (1990). Cyclic Neural Codes of Human Memory and Some Quantitative Regularities in Experimental Psychology. In H.-G. Geissler (Ed.) in collaboration with M. H. Müller and W. Prinz, Psychophysical Explorations of Mental Structures, 303-310. Toronto a.o.: Hogrefe & Huber First citation in articleGoogle Scholar

  • Leeuwenberg, E. L. J. , Buffart, H. F. J. M. (1983). An Outline of Coding Theory. Summary of Some Related Experiments. In Geissler, H.-G. (Ed.), Buffart, H. F. J. M., Leeuwenberg, E. L. J. & Sarris, V. (Co-Eds.), Modern Issues in Perception, 25-47. Amsterdam a. o.: North Holland First citation in articleGoogle Scholar

  • Leyton, M. (1992). Symmetry, causality, mind. Cambridge Ma, London: MIT Press First citation in articleGoogle Scholar

  • Link, S. W. (1991). The Wave Theory of Discrimination and Similarity. Hillsdale: Erlbaum Associates First citation in articleGoogle Scholar

  • Lisman, J. E. , Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267 , 1512– 1515 First citation in articleCrossrefGoogle Scholar

  • Maltseva, I. M. , Geissler, H.-G. , Basar, E. (2000). Alpha oscillations as an indicator of dynamic memory operations. International Journal of Psychophysiology, (im Druck) First citation in articleGoogle Scholar

  • Maltseva, I. V. , Masloboyev, Y. P. (1992). About new EEG-Parameter. International Journal of Psychology, 27 , 3-4 p. 415– 415 First citation in articleGoogle Scholar

  • Michon, J. A. (1967). Timing in temporal tracking. Assen, The Netherlands: Van Gorcum First citation in articleGoogle Scholar

  • Michotte, A. (1982). Gesammelte Werke. Bd. 1-4. Herausgegeben von O. Heller und W. Lohr. Bern u. a.: Hans Huber First citation in articleGoogle Scholar

  • Neuenschwander, S. , Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379 , 728– 733 First citation in articleCrossrefGoogle Scholar

  • Petzold, P. , Edeler (1995). Organization of person memory and retrieval processes in recognition. European Journal of Social Psychology, 25 , 249– 267 First citation in articleCrossrefGoogle Scholar

  • Pöppel, E. (1968). Oszillatorische Komponenten in Reaktionszeiten. Naturwissenschaften, 55 , 449– 450 First citation in articleCrossrefGoogle Scholar

  • Pöppel, E. (1970). Excitability cycles in central intermittency. Psychologische Forschung, 34 , 1– 9 First citation in articleCrossrefGoogle Scholar

  • Pöppel, E. (1971). Oscillations as a possible basis for time perception. Studium Generale, 24 , 85– 107 First citation in articleGoogle Scholar

  • Pöppel, E. (1997). A hierarchical model of temporal perception. Keynote Address. Proceedings of the 13th Annual Meeting of the International Society of Psychophysics, 15-22. Poznan First citation in articleGoogle Scholar

  • Puckett, J. M. , Kausler, D. H. (1984). Individual differences and models of memory span: A role for memory search rate?. Journal of Experimental Psychology: Learning, Memory and Cognition, 10 , 72– 82 First citation in articleCrossrefGoogle Scholar

  • Puffe, Martina (1990). Quantized speed-capacity relations in short-term memory. In H.-G. Geissler (Ed.), in collaboration with M. H. Müller and W. Prinz, Psychophysical Exploration of Mental Structures, 290-302. Toronto a.o.: Hogrefe & Huber First citation in articleGoogle Scholar

  • Schmidt, K.-D. , Ackermann, B. (1990). The Structure of Internal Representations and Reaction-Time Related Matching Task Phenomena. In Geissler, H.-G. (Ed.) in collaboration with M. H. Müller and W. Prinz, Psychophysical Explorations of Mental Structures, 278-289. Toronto a. o.: Hogrefe & Huber Publishers First citation in articleGoogle Scholar

  • Sokolov, E. N. (1963). Perception and the conditioned reflex. New York: Macmillan Company. Zit. nach Gaarder, K. R. (1975), Eye Movements, Vision and Behavior. New York: Wiley & Sons First citation in articleGoogle Scholar

  • Stebel, J. (1981). Feinstruktur-Spektralanalyse im Sekunden-Minuten-Bereich. In Schuh, J., Hecht, K. & Romanov, J. A. (Hrsg.), Chronobiologie - Chronomedizin. Berlin: Akademie-Verlag First citation in articleGoogle Scholar

  • Stebel, J. (1993). Vegetative rhythms and perception of time. In Gutenbrunner, C., Hildebrandt, G. & Moog, R. (Eds.), Chronobiology & Chronomedicine. Frankfurt a. M.: Peter Lang First citation in articleGoogle Scholar

  • Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57 , 4 421– 457 First citation in articleGoogle Scholar

  • Stroud, J. M. (1955). The fine structure of psychological time. In Quastler, H. (Ed.), Information Theory in Psychology, 140-207. Glencoe, Ill.: The Free Press First citation in articleGoogle Scholar

  • Tallon-Baudry, C. , Bertrand, O. , Delpeuch, C. , Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in humans. Journal of Neuroscience, 16 , 4240– 4249 First citation in articleGoogle Scholar

  • Tallon-Baudry, C. , Bertrand, O. , Delpeuch, C. , Pernier, J. (1997). Oscillatory g-band (30-70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17 , 722– 734 First citation in articleGoogle Scholar

  • Teghtsoonian, R. (1971). On the exponents in Stevens' law and on the constant in Ekman's law. Psychological Review, 78 , 71– 80 First citation in articleCrossrefGoogle Scholar

  • Treisman, M. , Cook, N. , Naish, P. L. N. , MacCrone, J. K. (1994). The Internal Clock: Electroencephalographic Evidence for Oscillatory Processes Underlying Time Perception. The Quarterly Journal of Experimental Psychology, 47A , 2 241– 289 First citation in articleCrossrefGoogle Scholar

  • Uusitalo, M. A. , Williamson, S. J. , Seppä, M. T. (1997). Dynamical Organization of the Human Visual System Revealed by Lifetimes of Activation Traces. Neuroscience Letters, im Druck First citation in articleGoogle Scholar

  • Vorberg, D. , Schwarz, W. (1987). Oscillatory mechanisms in human reaction times?. Naturwissenschaften, 74 , 446– 447 First citation in articleCrossrefGoogle Scholar

  • Vroon, P. A. (1974). Is there a time quantum in duration experience?. American Journal of Psychology, 87 , 237– 245 First citation in articleCrossrefGoogle Scholar

  • Williamson, S. J. , Kaufman, L. , Lu, Z.-L. , Wang, J.-Z. , Karron, D. (1997). Study of Human Occipital Alpha Rhythm: The Alphon Hypothesis and Alpha Suppression. International Journal of Psychophysiology, Special Issue 26 63– 76 First citation in articleCrossrefGoogle Scholar