Skip to main content
Published Online:https://doi.org/10.1026/0933-6885/a000103

Neuropsychologie trägt zur wissenschaftlichen Fundierung von Musiktherapie bei und liefert Erklärungsmodelle zu psychophysiologischen Wirkprozessen und klinischer Effizienz. Dabei spielen interdisziplinäre Ansätze in Bezug auf Chronobiologie, Regulationsmedizin und Ethnomedizin eine wichtige Rolle. Spezifische Hirnareale und neuronale Prozesse werden im Hinblick auf psychische Korrelate und musiktherapeutische Funktionen dargestellt und Aspekte für zukünftige Forschung skizziert.


Neuropsychological key problems in music therapy

Neuropsychology contributes to the scientific foundation of music therapy and yields explanatory models for psychophysiological effects and clinical efficiency. Interdisciplinary approaches including chronobiology, regulative medicine and ethnomedicine play an important role. Specific brain areas and neural processes are described in relation to psychic correlates and music therapeutic functions and future aspects of research are outlined.

Literatur

  • Angelucci, F. , Ricci, E. , Padua, L. , Sabino, A. , Tonali, A. A. (2007). Music exposure differentially alters the levels of brain-derived neurotropic factor and nerve growth factor in the mouse hypothalamus. Neuroscience Letters, 429 (2 – 3), 152 – 155. CrossrefGoogle Scholar

  • Ashmore, J. F. (1994). The cellular machinery of the cochlea. Experimental Physiology, 79 (2), 113 – 134 CrossrefGoogle Scholar

  • Bauer, E. P. , Schafe, G. E. , LeDoux, J. E. (2002). NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. The Journal of Neuroscience, 22, 5239 – 5249. CrossrefGoogle Scholar

  • Barnason, S. , Zimmerman, L. , Nieveen, J. (1995). The effects of music interventions on anxiety in the patient after coronary artery bypass grafting. Heart and Lung: The Journal of Acute Critical Care, 24. CrossrefGoogle Scholar

  • Bendor, D. , Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature (International weekly Journal of Science), 436, 1161 – 1165. Google Scholar

  • Bernstein, J. G. (2006). Pitch perception and harmonic resolvability in normal-hearing and hearing-impaired listeners. PhD Thesis, Cambridge, Massachusetts: Institute of Technology. Google Scholar

  • Brown, S. , Martinez, M. J. , Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport, 15, 2033 – 2037. CrossrefGoogle Scholar

  • Blair, H. T. , Schafe, G. E. , Bauer, E. P. , Rodrigues, S. M. , LeDoux, J. E. (2001). Synaptic plasticity in the lateral Amygdala: A cellular hypothesis for fear conditioning. Learning and Memory, 8, 229 – 242. CrossrefGoogle Scholar

  • Boatman, J. A. , Kim, J. J. (2006). A thalamo-cortico-amygdala pathway mediates auditory fear conditioning in the intact brain. European Journal of Neuroscience, 24, 894 – 900. CrossrefGoogle Scholar

  • Carlyon, R. P. (1998). Comments on „A unitary model of pitch perception”. Journal of the Acoustical Society of America, 104, 1118 – 1121. CrossrefGoogle Scholar

  • Cedolin, L. , Delgutte, B. (2010). Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve. The Journal of Neuroscience, 30, 12712 – 12724. CrossrefGoogle Scholar

  • Chen, P. , Neil, S. (1999). p27Kip1 links cell proliferation to morphogenesis in the developing organ of Corti. Development, 126, 1581 – 1590. CrossrefGoogle Scholar

  • Corti, A. G. G. (1851). Recherches sur l’organe de l’ouïe des mammiferes. Kölliker’s, 531 – 576. Google Scholar

  • Cross, I. (2001). Music, cognition, culture and evolution. Annals of the New York Academy of Sciences, 930, 143 – 152. CrossrefGoogle Scholar

  • Ellis, R. J. , Koenig, J. , Thayer, J. F. (2012). Getting to the heart: Autonomic nervous system function in the context of evidence-based music therapy. Music and Medicine, 4 (2), 90 – 99. CrossrefGoogle Scholar

  • Evers, S. , Suhr, B. (2000). Changes of the neurotransmitter serotonin but not of hormones during short time music perception. European archives of psychiatry and clinical neuroscience, 250, 144 – 147. CrossrefGoogle Scholar

  • Fishman, S. M. , Ballantyne, J. C. , Rathmell, J. P. (Eds.). (2009). Bonica’s management of pain. Philadelphia: Lippincott Williams & Wilkins. Google Scholar

  • Flier, J. S. (2006). Regulating energy balance: The substrate strikes back. Science, 312, 861 – 864. CrossrefGoogle Scholar

  • Fridberger, A. , Boutet de Monvel, J. , Zheng, J. , Hu, N. , Zou, Y. , Ren, T. & Nuttall, A. (2004). Organ of Corti Potentials and the Motion of the Basilar Membrane. The Journal of Neurosciences, 24, 10057 – 10063. Google Scholar

  • Fukui, H. , Toyoshima, K. (2008). Music facilitate the neurogenesis, regeneration and repair of neurons. Medical Hypotheses, 71, 765 – 769. CrossrefGoogle Scholar

  • Haque, T. , Yamamoto, S. , Masuda, Y. , Kato, T. , Sato, F. , Uchino, K. et al. (2010). Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurones in the rat. Brain Research, 1346, 69 – 82. CrossrefGoogle Scholar

  • Issa, Elias B. , Wang, X. (2008). Sensory responses during sleep in primate primary and secondary auditory cortex. The Journal of Neuroscience, 28, 14467 – 14480. CrossrefGoogle Scholar

  • Kalinga Dona, L. M. (2010). Therapeutic aspects of south asian musics: case studies from Sri Lanka and North India. Doctoral Thesis. Ljubljana: University of Ljubljana/Faculty of Arts/Department of Musicology. Google Scholar

  • Khalfa, S. , Dalla Bella, S. , Roy, M. , Peretz, I. & Lupien, S. J. (2003). Effects of relaxing music on salivary cortisol level after psychological stress. Annals of the New York Academy of Sciences, 999, 374 – 376. CrossrefGoogle Scholar

  • Koch, M. E. , Kain, Z. N. , Ayoub, C. & Rosenbaum, S. H. (1998). The sedative and analgesic sparing effect of music. Anaesthesiology, 89, 300 – 306. Google Scholar

  • Koelsch, S. , Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9, 578 – 584. CrossrefGoogle Scholar

  • Kreutz, G. , Bongard, S. , Grebe, D. , Rohrmann, S. , Hodapp, V. (2004). Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. Journal of Behavioral Medicine, 27, 623 – 635. CrossrefGoogle Scholar

  • Larsen, E. , Cedolin, L. & Delgutte, B. (2008). Pitch representations in the auditory nerve: Two concurrent complex tones. Journal of Neurophysiology, 100, 1301 – 1319. CrossrefGoogle Scholar

  • Leaver, A. M. , Renier, L. , Chevillet, M. A. , Morgan, S. , Kim, H. J. , Rauschecker, J. P. (2011). Dysregulation of Limbic and Auditory Networks in Tinnitus. Neuron, 69, 33 – 43. CrossrefGoogle Scholar

  • Lee, H. J.. Choi , J. S., Brown , T. H. & Kim, J. J. (2001). Amygdalar NMDA receptors are critical for the expression of multiple conditioned fear responses. The Journal of Neuroscience, 21, 4111 – 4115. CrossrefGoogle Scholar

  • Li, X. F. , Stutzmann, G. E. , LeDoux, J. E. (1996). Convergent but temporally separated inputs to lateral Amygdala Neurons from the Auditory Thalamus and Auditory Cortex use different postsynaptic receptors: In vivo intracellular and extracellular recordings in fear conditioning pathways. Learning Memory, 88, 359 – 368. Google Scholar

  • Mahlke, C. , Wallhäusser-Franke, E. (2004). Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hearing Research, 195 (1 – 2), 17 – 34. CrossrefGoogle Scholar

  • May, B. J. (2000). Role of the dorsal cochlear nucleus in the sound localization behavior of cats. Hearing Research, 148, 74 – 87. CrossrefGoogle Scholar

  • Menon, V. , Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage, 28, 175 – 184. CrossrefGoogle Scholar

  • Migneault, B. , Girard, F. , Albert, C. , Chouinard, P. , Boudreault, D. , Todorov, A. et al. (2004). The effects of music on the neurohormonal stress response to surgery under general anesthesia. Anesthesia and Analgesia, 98, 527 – 532. CrossrefGoogle Scholar

  • Miller, C. T. , Wang, X. (2006). Sensory-motor interactions modulate a primate vocal behavior: Antiphonal calling in common marmosets. Journal of Comparative Physiology A, 192, 27 – 38. CrossrefGoogle Scholar

  • Min, B.-K. (2010). A thalamic reticular networking model of consciousness. Theoretical Biology and Medical Modelling, 7 (10), 1 – 18. CrossrefGoogle Scholar

  • Möckel, M. , Röcker, L. , Störk, T. , Vollert, J. , Danne, O. , Eichstädt, H. , Müller, R. & Hochrein, H. (1994). Immediate physiological responses of healthy volunteers to different types of music: Cardiovascular, hormonal and mental changes. European Journal of Applied Physiology and Occupational Physiology, 68, 451 – 459. CrossrefGoogle Scholar

  • Möckel, M. , Störk, T. , Vollert, J. et.al. (1995). Stress reducation through listening to music: effects on stress hormones, hemodynamics and mental state in patients with arterial hypertension and in healthy persons. Deutsche Medizinische Wochenschrift, 120, 745 – 752. CrossrefGoogle Scholar

  • Montello, L. (1995). Music therapy for musicians: Reducing stress and enhancing immunity. International Journal of Arts Medicine, 4 (2), 14 – 21. Google Scholar

  • Morrison, S. J. , Dermorest, Steven M. , Stambaugh, L. A. (2008). Enculturation effects in music cognition: The role of age and music complexity. Journal of Research in Music Education, 56, 118 – 129. CrossrefGoogle Scholar

  • Myers, M. G. , Simerly, R. B. (2010). The neuroendocrinology and neuroscience of energy balance. Front Neuroendocrinology, 31 (1), 1 – 3. CrossrefGoogle Scholar

  • Nilsson, U. , Rawal, N. , Unosson, M. (2003). A comparison of intra-operative or postoperative exposure to music–A controlled trial on the effects on postoperative pain. Anaesthesia, 58, 699 – 703. CrossrefGoogle Scholar

  • Nilsson, U. (2008). The anxiety- and pain-reducing effects of music interventions: A systematic review. AORN Journal, 87, 780 – 807. CrossrefGoogle Scholar

  • Nilsson, S. , Kokinsky, E. , Nilsson, U. , Sidenvall, B. , Enskär, K. (2009). School-aged children’s experience of postoperative music medicine on pain, distress and anxiety. Pediatric Anesthesia, 19, 1189 – 1190. CrossrefGoogle Scholar

  • Noback, C. R. , Strominger, N. L. , Demarest, R. J. , Ruggiero, D. A. (20056). The human nervous system. Structure and function (6th ed.). Totowa, New Jersey: Human Press. Google Scholar

  • Nowotny, M. , Gummer, A. W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 103, 2120 – 2125. CrossrefGoogle Scholar

  • Núñez, M. J. , Mañá, P. , Liñares, D. , Riveiro, M. P. , Balboa, J. , Suárez-Quintanilla, J. et al. (2002). Music, immunity and cancer. Life Sciences, 71, 1047 – 1057. CrossrefGoogle Scholar

  • Okada, K. , Kurita, A. , Takase, B. , Otsuka, T. et.al. (2009). Effects of music therapy on autonomic nervous system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with cerebrovascular disease and dementia. International Heart Journal, 50 (1), 95 – 110. CrossrefGoogle Scholar

  • O’Mahony, D. , Rowan, M. , Feely, J. , Walsh, J. B. , Coakley, D. (1994). Primary auditory pathway and reticular activating system dysfunction in Alzheimer’s disease. Neurobiology, 44, 2089 – 2094. Google Scholar

  • Ota, K. T. , Pierre, V. J. , Ploski, J. E. , Queen, K. , Schafe, G. E. (2008). The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of EKR/MAP kinase. Learning and Memory, 15, 792 – 805. CrossrefGoogle Scholar

  • Oxenham, A. J. , Micheyl, C. , Keebler, M. V. , Loper, A. & Santurette, S. (2011). Pitch perception beyond the traditional existence region of pitch. Proceeding of the National Academy of Sciences of the United States of America, 108. CrossrefGoogle Scholar

  • Poulos, A. M. , Li, V. , Sterlace, S. S. , Tokushige, F. , Ponnusamy, R. , Fanselow, M. S. (2009). Persistence of fear memory across time requires the basolateral amygdala complex. PNAS (Proceedings of the National Academy of Sciences of the United States of America), 106, 11737 – 11741. CrossrefGoogle Scholar

  • Quirk, G. J. , Armony, J. L. , LeDoux, J. E. (1997). Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron, 19, 613 – 624. CrossrefGoogle Scholar

  • Read, H. L. , Miller L. M., Schreiner , C. E. & Winer, J. A. (2008). Two thalamic pathways to primary auditory cortex. Neurosciences, 152, 151 – 159. CrossrefGoogle Scholar

  • Rheinlaender, J. (1975). Transmission of acoustic information at three neuronal levels in the auditory system of Decticus verrucivorus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 97 (1), 415 – 428. CrossrefGoogle Scholar

  • Rider, M. S. , Floyd, J. W. , Kirkpatrick, J. (1985). The effect of music, imagery, and relaxation on adrenal corticosteroids and the re-entrainment of circadian rhythms. Journal of Music Therapy, 22 (1), 46 – 58. CrossrefGoogle Scholar

  • Rodrigues, S. M. , Schafe, G. E. , LeDoux, J. E. (2001). Intra-Amygdala Blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. The Journal of Neuroscience, 21, 6889 – 6896. CrossrefGoogle Scholar

  • Romanski, L. , LeDoux, J. E. (1993). Information cascade from primary auditory cortex to the amygdala: Corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cerebral Cortex, 3, 515 – 532. CrossrefGoogle Scholar

  • Sadagopan, S. , Wang, X. (2009). Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. The Journal of Neuroscience, 29, 11192 – 11202. CrossrefGoogle Scholar

  • Sah, P. , Faber, E. S. , Lopez de Armenita, M. , Power, J. (2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83, 803 – 834. CrossrefGoogle Scholar

  • Salimpoor, V. N. , Benovoy, M. , Larcher, K. & Dagher, A. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotions to music. Nature neuroscience, 14, 257 – 262. CrossrefGoogle Scholar

  • Sander, K. , Frome, Y. , Scheich, H. (2007). FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying. Human Brain Mapping, 28, 1007 – 1022. CrossrefGoogle Scholar

  • Sheldon, B. (2011). Cognitive-behavioural therapy. Research and practice in health and social care. Abingdon, Oxon: Routledge. CrossrefGoogle Scholar

  • Siegel, J. M. (1979). Behavioral functions of the reticular formation. Brain Research Reviews, 1, 69 – 105. CrossrefGoogle Scholar

  • Sotres-Bayon, F. , Bush, D. E. A. , LeDoux, J. E. (2004). Emotional perseveration: An update on prefrontal-amygdala interactions in fear extinction. Learning and Memory, 7, 73 – 84. Google Scholar

  • Stenfelt, S. (2006). Middle ear ossicles motion at hearing threshold with air conduction and bone conduction simulation. Journal of the Acoustical Society of America, 119, 2848 – 2858. CrossrefGoogle Scholar

  • Suda, M. , Morimoto, K. , Obata, A. , Koizumi, H. & Maki, A. (2008). Emotional responses to music: Towards scientific perspectives on music therapy. Neuroreport, 19 (1), 75 – 78. CrossrefGoogle Scholar

  • Sutoo, D. , Akiyama, K. (2004). Music improves dopaminergic neurotransmission: Demonstration based on the effect of music on blood pressure regulation. Brain Research, 1016, 255 – 262. CrossrefGoogle Scholar

  • Tang, J. , Yang, W. , Suga, N. (2012). Modulation of thalamic auditory neurons by the primary auditory cortex. Journal of Neurophysiology, 108, 935 – 942. CrossrefGoogle Scholar

  • Vincent, S. R. (2000). The ascending reticular activating system–from aminergic neurons to nitric oxide. Journal of Chemical Neuroanatomy, 18 (1 – 2), 23 – 30. CrossrefGoogle Scholar

  • Vollert, J. O. , Störk, T. , Rose, M. et. al. (2002). Reception of music in patients with systemic arterial hypertension and coronary artery disease: Endocrine changes, hemodynamics and actual mood. Perfusion, 15, 142 – 152. Google Scholar

  • Vollert, J. O. , Störk, T. , Rose, M. , Möckel, M. (2003). Music accompanying treatment of coronary heart disease: Therapeutic music lower anxiety, stress and β-endorphin concentration in patients of a coronary sport unit. Deutsche Medizinische Wochenschrift, 128, 2712 – 2716. CrossrefGoogle Scholar

  • Wang, G. I. (2011). Coincidence detection in the cochlear nucleus: Implications for the coding of pitch. Doctoral thesis. Department of electrical engineering and computer science. Illinois: University of Illinois. Google Scholar

  • Wang, X. , Lu, T. , Snider, R. K. , Liang, L. (2005). Sustained firing in auditory cortex evoked by preferred stimuli. Nature, 435, 341 – 346. CrossrefGoogle Scholar

  • Wheeler, B. L. (Ed.). (2005). Music therapy research. Gilsum, NH: Barcelona Publishers. Google Scholar

  • White, J. M. (1999). Effects of relaxing music on cardiac autonomic balance and anxiety after acute myocardial infarction. American Journal of Critical Care, 8, 220 – 230. CrossrefGoogle Scholar

  • Yukie, M. (2002). Connections between the amygdala and auditory cortical areas in the macaque monkey. Neuroscience Research, 42, 219 – 299. CrossrefGoogle Scholar

  • Zhou, Y. , Wang X., (2010). Cortical processing of dynamic sound envelope transitions. The Journal of Neuroscience, 30, 16741 – 16754. CrossrefGoogle Scholar