Skip to main content
Article

Inter-Method Reliability of Pulse Volume Related Measures Derived Using Finger-Photoplethysmography

Across Sensor Positions and Light Intensities

Published Online:https://doi.org/10.1027/0269-8803/a000197

Abstract. Pulse volume (PV) and its related measures, such as modified normalized pulse volume (mNPV), direct-current component (DC), and pulse rate (PR), derived from the finger-photoplethysmogram (FPPG), are useful psychophysiological measures. Although considerable uncertainties exist in finger-photoplethysmography, little is known about the extent of the adverse effects on the measures. In this study, we therefore examined the inter-method reliability of each index across sensor positions and light intensities, which are major disturbance factors of FPPG. From the tips of the index fingers of 12 participants in a resting state, three simultaneous FPPGs having overlapping optical paths were recorded, with their light intensity being changed in three steps. The analysis revealed that the minimum values of three coefficients of Cronbach’s α for ln PV, ln mNPV, ln DC, and PR across positions were .948, .850, .922, and 1.000, respectively, and that those across intensities were .774, .985, .485, and .998, respectively. These findings suggest that ln mNPV and PR can be used for psychophysiological studies irrespective of minor differences in sensor attachment positions and light source intensity, whereas and ln DC can also be used for such studies but under the condition of light intensity being fixed.

References

  • Al’Absi, M., Nakajima, M., Hooker, S., Wittmers, L. & Cragin, T. (2012). Exposure to acute stress is associated with attenuated sweet taste. Psychophysiology, 49, 96–103. doi: 10.1111/j.1469-8986.2011.01289.x First citation in articleCrossrefGoogle Scholar

  • Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28, R1–R39. doi: 10.1088/0967-3334/28/3/R01 First citation in articleCrossrefGoogle Scholar

  • Arridge, S. R., Cope, M. & Delpy, D. T. (1992). The theoretical basis for the determination of optical pathlengths in tissue: Temporal and frequency analysis. Physics in Medicine and Biology, 37, 1531–1560. doi: 10.1088/0031-9155/37/7/005 First citation in articleCrossrefGoogle Scholar

  • Barcroft, H. (1960). Sympathetic control of vessels in the hand and forearm skin. Physiological Reviews Supplement, 4, 81–92. First citation in articleGoogle Scholar

  • Bichescu-Burian, D., Steyer, J., Steinert, T., Grieb, B. & Tschoke, S. (2017). Trauma-related dissociation: Psychological features and psychophysiological responses to script-driven imagery in borderline personality disorder. Psychophysiology, 54, 452–461. doi: 10.1111/psyp.12795 First citation in articleCrossrefGoogle Scholar

  • Bland, J. M. & Altman, D. G. (1997). Cronbach’s alpha. British Medical Journal, 314, 572. doi: 10.1136/bmj.314.7080.572 First citation in articleCrossrefGoogle Scholar

  • Bloom, L. J. & Trautt, G. M. (1977). Finger pulse volume as a measure of anxiety: Further evaluation. Psychophysiology, 14, 541–544. doi: 10.1111/j.1469-8986.1977.tb01195.x First citation in articleCrossrefGoogle Scholar

  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. doi: 10.1007/BF02310555 First citation in articleCrossrefGoogle Scholar

  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S. & Wyatt, J. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 33, 1433–1442. doi: 10.1088/0031-9155/33/12/008 First citation in articleCrossrefGoogle Scholar

  • Farrell, T. J., Patterson, M. S. & Wilson, B. (1992). A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical Physics, 19, 879–888. doi: 10.1118/1.596777 First citation in articleCrossrefGoogle Scholar

  • Furedy, J. J. (1968). Human orienting reaction as a function of electrodermal versus plethysmographic response modes and single versus alternating stimulus series. Journal of Experimental Psychology, 77, 70–78. doi: 10.1037/h0025803 First citation in articleCrossrefGoogle Scholar

  • Giltvedt, J., Sira, A. & Helme, P. (1984). Pulsed multifrequency photoplethysmograph. Medical & Biological Engineering & Computing, 22, 212–215. doi: 10.1007/BF02442745 First citation in articleCrossrefGoogle Scholar

  • Gregg, M. E., Matyas, T. A. & James, J. E. (2002). A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology, 39, 64–72. doi: 10.1017/S0048577202001154 First citation in articleCrossrefGoogle Scholar

  • Heathers, J. A. (2013). Smartphone-enabled pulse rate variability: An alternative methodology for the collection of heart rate variability in psychophysiological research. International Journal of Psychophysiology, 89, 297–304. doi: 10.1016/j.ijpsycho.2013.05.017 First citation in articleCrossrefGoogle Scholar

  • Hiraoka, M., Firbank, M., Essenpreis, M., Cope, M., Arridge, S. R., van der Zee, P. & Delpy, D. T. (1993). A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Physics in Medicine and Biology, 38, 1859–1876. doi: 10.1088/0031-9155/38/12/011 First citation in articleCrossrefGoogle Scholar

  • Julien, C. (2006). The enigma of Mayer waves: Facts and models. Cardiovascular Research, 70, 12–21. doi: 10.1016/j.cardiores.2005.11.008 First citation in articleCrossrefGoogle Scholar

  • Kamshilin, A. A., Nippolainen, E., Sidorov, I. S., Vasilev, P. V., Erofeev, N. P., Podolian, N. P. & Romashko, R. V. (2015). A new look at the essence of the imaging photoplethysmography. Scientific Reports, 5, 10494. doi: 10.1038/srep10494 First citation in articleCrossrefGoogle Scholar

  • Kelleher, J. F. & Ruff, R. H. (1989). The penumbra effect: Vasomotion-dependent pulse oximeter artifact due to probe malposition. Anesthesiology, 71, 787–791. doi: 10.1097/00000542-198911000-00028 First citation in articleCrossrefGoogle Scholar

  • Lee, J., Matsumura, K., Yamakoshi, T., Rolfe, P., Tanaka, N., Kim, K. & Yamakoshi, K. (2013). Validation of normalized pulse volume in the outer ear as a simple measure of sympathetic activity using warm and cold pressor tests: Towards applications in ambulatory monitoring. Physiological Measurement, 34, 359–375. doi: 10.1088/0967-3334/34/3/359 First citation in articleCrossrefGoogle Scholar

  • Light, K. C. (1981). Cardiovascular responses to effortful active coping: Implications for the role of stress in hypertension development. Psychophysiology, 18, 216–225. doi: 10.1111/j.1469-8986.1981.tb03021.x First citation in articleCrossrefGoogle Scholar

  • Maikala, R. V. (2010). Modified Beer’s law – Historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue. International Journal of Industrial Ergonomics, 40, 125–134. doi: 10.1016/J.Ergon.2009.02.011 First citation in articleCrossrefGoogle Scholar

  • Matsumura, K., Noguchi, H., Nishi, D., Hamazaki, K., Hamazaki, T. & Matsuoka, Y. J. (2016). Effects of omega-3 polyunsaturated fatty acids on psychophysiological symptoms of post-traumatic stress disorder in accident survivors: A randomized, double-blind, placebo-controlled trial. Journal of Affective Disorders, Advance online publication. doi: 10.1016/j.jad.2016.05.054 First citation in articleCrossrefGoogle Scholar

  • Matsumura, K., Rolfe, P., Lee, J. & Yamakoshi, T. (2014). iPhone 4s photoplethysmography: Which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter application in the presence of motion artifact? PLoS One, 9, e91205. doi: 10.1371/journal.pone.0091205 First citation in articleCrossrefGoogle Scholar

  • Matsumura, K., Rolfe, P. & Yamakoshi, T. (2015). iPhysioMeter: A smartphone photoplethysmograph for measuring various physiological indices. Methods in Molecular Biology, 1256, 305–326. doi: 10.1007/978-1-4939-2172-0_21 First citation in articleCrossrefGoogle Scholar

  • Matsumura, K. & Yamakoshi, T. (2013). iPhysioMeter: A new approach for measuring heart rate and normalized pulse volume using only a smartphone. Behavior Research Methods, 45, 1272–1278. doi: 10.3758/s13428-012-0312-z First citation in articleCrossrefGoogle Scholar

  • Matsumura, K., Yamakoshi, T., Noguchi, H., Rolfe, P. & Matsuoka, Y. (2012). Fish consumption and cardiovascular response during mental stress. BMC Research Notes, 5, 288. doi: 10.1186/1756-0500-5-288 First citation in articleCrossrefGoogle Scholar

  • Matsumura, K., Yamakoshi, T., Rolfe, P. & Yamakoshi, K. (2017). Advanced volume-compensation method for indirect finger arterial pressure determination: Comparison with brachial sphygmomanometry. IEEE Transactions on Biomedical Engineering, 64, 1131–1137. doi: 10.1109/TBME.2016.2591324 First citation in articleCrossrefGoogle Scholar

  • Miller, S. B. & Ditto, B. (1991). Exaggerated sympathetic nervous system response to extended psychological stress in offspring of hypertensives. Psychophysiology, 28, 103–113. doi: 10.1111/j.1469-8986.1991.tb03395.x First citation in articleCrossrefGoogle Scholar

  • Nakonezny, P. A., Kowalewski, R. B., Ernst, J. M., Hawkley, L. C., Lozano, D. L., Litvack, D. A., … Lovallo, W. R. (2001). New ambulatory impedance cardiograph validated against the Minnesota impedance cardiograph. Psychophysiology, 38, 465–473. doi: 10.1111/1469-8986.3830465 First citation in articleCrossrefGoogle Scholar

  • Poh, M. Z., McDuff, D. J. & Picard, R. W. (2011). Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Transactions on Biomedical Engineering, 58, 7–11. doi: 10.1109/TBME.2010.2086456 First citation in articleCrossrefGoogle Scholar

  • Rolfe, P. (2000). In vivo near-infrared spectroscopy. Annual Review of Biomedical Engineering, 2, 715–754. doi: 10.1146/annurev.bioeng.2.1.715 First citation in articleCrossrefGoogle Scholar

  • Sawada, Y., Nagano, Y. & Tanaka, G. (2002). Mirror tracing and the provocation of vascular-dominant reaction pattern through heightened attention. Journal of Psychophysiology, 16, 201–210. doi: 10.1027/0269-8803.16.4.201 First citation in articleLinkGoogle Scholar

  • Sawada, Y., Tanaka, G. & Yamakoshi, K. (2001). Normalized pulse volume (NPV) derived photo-plethysmographically as a more valid measure of the finger vascular tone. International Journal of Psychophysiology, 41, 1–10. doi: 10.1016/S0167-8760(00)00162-8 First citation in articleCrossrefGoogle Scholar

  • Sherwood, A., Dolan, C. A. & Light, K. C. (1990). Hemodynamics of blood pressure responses during active and passive coping. Psychophysiology, 27, 656–668. doi: 10.1111/j.1469-8986.1990.tb03189.x First citation in articleCrossrefGoogle Scholar

  • Shrout, P. E. & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428. doi: 10.1037/0033-2909.86.2.420 First citation in articleCrossrefGoogle Scholar

  • Smith, T. W., Houston, B. K. & Stucky, R. J. (1985). Effects of threat of shock and control over shock on finger pulse volume, pulse rate and systolic blood pressure. Biological Psychology, 20, 31–38. doi: 10.1016/0301-0511(85)90039-0 First citation in articleCrossrefGoogle Scholar

  • Smith, T. W., Houston, B. K. & Zurawski, R. M. (1984). Finger pulse volume as a measure of anxiety in response to evaluative threat. Psychophysiology, 21, 260–264. doi: 10.1111/j.1469-8986.1984.tb02932.x First citation in articleCrossrefGoogle Scholar

  • Tanaka, G., Sawada, Y., Matsumura, K., Nagano, Y. & Yamakoshi, K. (2002). Finger arterial compliance as determined by transmission of light during mental stress and reactive hyperaemia. European Journal of Applied Physiology, 87, 562–567. doi: 10.1007/s00421-002-0665-6 First citation in articleCrossrefGoogle Scholar

  • Tanaka, G., Yamakoshi, K., Sawada, Y., Matsumura, K., Maeda, K., Kato, Y., … Ohguro, H. (2011). A novel photoplethysmography technique to derive normalized arterial stiffness as a blood pressure independent measure in the finger vascular bed. Physiological Measurement, 32, 1869–1883. doi: 10.1088/0967-3334/32/11/003 First citation in articleCrossrefGoogle Scholar

  • Teng, X. F. & Zhang, Y. T. (2004). The effect of contacting force on photoplethysmographic signals. Physiological Measurement, 25, 1323–1335. doi: 10.1088/0967-3334/25/5/020 First citation in articleCrossrefGoogle Scholar

  • Tsuchiya, Y. & Urakami, T. (1995). Photon migration model for turbid biological medium having various shapes. Japanese Journal of Applied Physics Part 2-Letters, 34, L79–L81. doi: 10.1143/Jjap.34.L79 First citation in articleCrossrefGoogle Scholar

  • Tsuchiya, Y. & Urakami, T. (1997). Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer-Lambert law. Optics Communications, 144, 269–280. doi: 10.1016/S0030-4018(97)00469-0 First citation in articleCrossrefGoogle Scholar

  • Webster, J. G. (1997). Design of pulse oximeters. New York, NY: Taylor & Francis Group, LLC. First citation in articleCrossrefGoogle Scholar

  • Wesseling, K. H., Wit, B., Hoeven, G. M. A., Goudoever, J. & Settels, J. J. (1995). Physiocal, calibrating finger vascular physiology for finapres. Homeostasis, 36, 67–82. First citation in articleGoogle Scholar

  • Yamakoshi, Y., Matsumura, K., Yamakoshi, T., Lee, J., Rolfe, P., Motoi, K., … Yamakoshi, K. (2016, August 17–20). A novel multichannel laser photoplethysmograph for the detection of side-scattered light in a wavelength range with blood glucose absorption, Paper presented at the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lake Buena Vista (Orlando), FL, USA. First citation in articleGoogle Scholar

  • Zimny, G. H. & Miller, F. L. (1966). Orienting and adaptive cardiovascular responses to heat and cold. Psychophysiology, 3, 81–92. doi: 10.1111/j.1469-8986.1966.tb02683.x First citation in articleCrossrefGoogle Scholar