Skip to main content
Article

Somatosensory Deviance Detection ERPs and Their Relationship to Analogous Auditory ERPs and Interoceptive Accuracy

Published Online:https://doi.org/10.1027/0269-8803/a000288

Abstract. Automatic deviance detection has been widely explored in terms of mismatch responses (mismatch negativity or mismatch response) and P3a components of event-related potentials (ERPs) under a predictive coding framework; however, the somatosensory mismatch response has been investigated less often regarding the different types of changes than its auditory counterpart. It is not known whether the deviance detection responses from different modalities correlate, reflecting a general prediction error mechanism of the central nervous system. Furthermore, interoceptive functions have been associated with predictive coding theory, but whether interoceptive accuracy correlates with deviance detection brain responses has rarely been investigated. Here, we measured ERPs to changes in somatosensory stimuli’s location and intensity and in sound intensity in healthy adults (n = 34). Interoceptive accuracy was measured with a heartbeat discrimination task, where participants indicated whether their heartbeats were simultaneous or non-simultaneous with sound stimuli. We found a mismatch response and a P3a response to somatosensory location and auditory intensity changes, but for somatosensory intensity changes, only a P3a response was found. Unexpectedly, there were neither correlations between the somatosensory location deviance and intensity deviance brain responses nor between auditory and somatosensory brain responses. In addition, the brain responses did not correlate with interoceptive accuracy. The results suggest that although deviance detection in the auditory and somatosensory modalities are likely based on similar neural mechanisms at a cellular level, their ERP indexes do not indicate a linear association in sensitivity for deviance detection between the modalities. Furthermore, although sensory deviance detection and interoceptive detection are both associated with predictive coding functions, under these experimental settings, functional relationships were not observed. These results should be taken into account in the future development of theories related to human sensory functions and in extensions of the predictive coding theory in particular.

References

  • Akatsuka, K., Wasaka, T., Nakata, H., Inui, K., Hoshiyama, M., & Kakigi, R. (2005). Mismatch responses related to temporal discrimination of somatosensory stimulation. Clinical Neurophysiology, 116(8), 1930–1937. https://doi.org/10.1016/j.clinph.2005.04.021 First citation in articleCrossrefGoogle Scholar

  • Akatsuka, K., Wasaka, T., Nakata, H., Kida, T., Hoshiyama, M., Tamura, Y., & Kakigi, R. (2007). Objective examination for two-point stimulation using a somatosensory oddball paradigm: An MEG study. Clinical Neurophysiology, 118(2), 403–411. https://doi.org/10.1016/j.clinph.2006.09.030 First citation in articleCrossrefGoogle Scholar

  • Astikainen, P., Lillstrang, E., & Ruusuvirta, T. (2008). Visual mismatch negativity for changes in orientation–a sensory memory-dependent response. European Journal of Neuroscience, 28(11), 2319–2324. https://doi.org/10.1111/j.1460-9568.2008.06510.x First citation in articleCrossrefGoogle Scholar

  • Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419–429. https://doi.org/10.1038/nrn3950 First citation in articleCrossrefGoogle Scholar

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x First citation in articleCrossrefGoogle Scholar

  • Bensmaia, S. J. (2008). Tactile intensity and population codes. Behavioural Brain Research, 190(2), 165–173. https://doi.org/10.1016/j.bbr.2008.02.044 First citation in articleCrossrefGoogle Scholar

  • Biagianti, B., Roach, B. J., Fisher, M., Loewy, R., Ford, J. M., Vinogradov, S., & Mathalon, D. H. (2017). Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia. Neuropsychiatric Electrophysiology, 3, Article 2. https://doi.org/10.1186/s40810-017-0024-9 First citation in articleCrossrefGoogle Scholar

  • Brener, J., & Kluvitse, C. (1988). Heartbeat detection: Judgments of the simultaneity of external stimuli and heartbeats. Psychophysiology, 25(5), 554–561. https://doi.org/10.1111/j.1469-8986.1988.tb01891.x First citation in articleCrossrefGoogle Scholar

  • Butler, J. S., Molholm, S., Fiebelkorn, I. C., Mercier, M. R., Schwartz, T. H., & Foxe, J. J. (2011). Common or redundant neural circuits for duration processing across audition and touch. Journal of Neuroscience, 31(9), 3400–3406. https://doi.org/10.1523/JNEUROSCI.3296-10.2011 First citation in articleCrossrefGoogle Scholar

  • Carbajal, G. V., & Malmierca, M. S. (2018). The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends in Hearing, 22, 1–33. https://doi.org/10.1177/2331216518784822 First citation in articleCrossrefGoogle Scholar

  • Ceunen, E., Vlaeyen, J. W., & Van Diest, I. (2016). On the origin of interoception. Frontiers in Psychology, 7, Article 743. https://doi.org/10.3389/fpsyg.2016.00743 First citation in articleCrossrefGoogle Scholar

  • Chen, J. C., Hämmerer, D., D’Ostilio, K., Casula, E. P., Marshall, L., Tsai, C. H., Rothwell, J. C., & Edwards, M. J. (2014). Bi-directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: An event related potential study. Journal of Physiology, 592(4), 745–757. https://doi.org/10.1113/jphysiol.2013.260331 First citation in articleCrossrefGoogle Scholar

  • Chen, J. C., Hämmerer, D., Strigaro, G., Liou, L. M., Tsai, C. H., Rothwell, J., & Edwards, M. J. (2014). Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. Clinical Neurophysiology, 125(3), 585–592. https://doi.org/10.1016/j.clinph.2013.08.007 First citation in articleCrossrefGoogle Scholar

  • Chen, J. C., Macerollo, A., Sadnicka, A., Lu, M.-K., Tsai, C.-H., Korlipara, P., Bhatia, K., Rothwell, J. C., & Edwards, M. J. (2018). Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity. Clinical Neurophysiology, 129(9), 1947–1954. https://doi.org/10.1016/j.clinph.2018.05.028 First citation in articleCrossrefGoogle Scholar

  • Chen, J., Zhang, Y., Wei, D., Wu, X., Fu, Q., Xu, F., Wang, H., Ye, M., Ma, W., Yang, L., & Zhang, Z. (2015). Neurophysiological handover from MMN to P3a in first-episode and recurrent major depression. Journal of Affective Disorders, 174, 173–179. https://doi.org/10.1016/j.jad.2014.11.049 First citation in articleCrossrefGoogle Scholar

  • Chen, T. L., Babiloni, C., Ferretti, A., Perrucci, M. G., Romani, G. L., & Rossini, P. M. (2010). Effects of somatosensory stimulation and attention on human somatosensory cortex: An fMRI study. NeuroImage, 53(1), 181–188. https://doi.org/10.1016/j.neuroimage.2010.06.023 First citation in articleCrossrefGoogle Scholar

  • Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibanez, A., Owen, A. M., & Bekinschtein, T. (2013). Expectation and attention in hierarchical auditory prediction. Journal of Neuroscience, 33(27), 11194–11205. https://doi.org/10.1523/JNEUROSCI.0114-13.2013 First citation in articleCrossrefGoogle Scholar

  • Chien, Y.-L., Hsieh, M. H., & Gau, S. S.-F. (2018). Mismatch negativity and p3a in adolescents and young adults with autism spectrum disorders: Behavioral correlates and clinical implications. Journal of Autism and Developmental Disorders, 48(5), 1684–1697. https://doi.org/10.1007/s10803-017-3426-4 First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655–666. https://doi.org/10.1038/nrn894 First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13(4), 500–505. https://doi.org/10.1016/S0959-4388(03)00090-4 First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2009). How do you feel–now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70. https://doi.org/10.1038/nrn2555 First citation in articleCrossrefGoogle Scholar

  • Dancey, C. P., & Reidy, J. (2007). Statistics without maths for psychology (4th ed.). Pearson/Prentice Hall. First citation in articleGoogle Scholar

  • Denham, S. L., & Winkler, I. (2020). Predictive coding in auditory perception: Challenges and unresolved questions. European Journal of Neuroscience, 51(5), 1151–1160. https://doi.org/10.1111/ejn.13802 First citation in articleCrossrefGoogle Scholar

  • Deouell, L. Y. (2007). The frontal generator of the mismatch negativity revisited. Journal of Psychophysiology, 21(3–4), 188–203. https://doi.org/10.1027/0269-8803.21.34.188 First citation in articleLinkGoogle Scholar

  • Deouell, L. Y., & Bentin, S. (1998). Variable cerebral responses to equally distinct deviance in four auditory dimensions: A mismatch negativity study. Psychophysiology, 35(6), 745–754. First citation in articleCrossrefGoogle Scholar

  • Durlik, C., Cardini, F., & Tsakiris, M. (2014). Being watched: The effect of social self-focus on interoceptive and exteroceptive somatosensory perception. Consciousness and Cognition, 25, 42–50. https://doi.org/10.1016/j.concog.2014.01.010 First citation in articleCrossrefGoogle Scholar

  • Escera, C., Alho, K., Schröger, E., & Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology & Neurotology, 5(3–4), 151–166. https://doi.org/10.1159/000013877 First citation in articleCrossrefGoogle Scholar

  • Eshkevari, E., Rieger, E., Musiat, P., & Treasure, J. (2014). An investigation of interoceptive sensitivity in eating disorders using a heartbeat detection task and a self-report measure. European Eating Disorders Review, 22(5), 383–388. https://doi.org/10.1002/erv.2305 First citation in articleCrossrefGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146 First citation in articleCrossrefGoogle Scholar

  • Friedman, D., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience & Biobehavioral Reviews, 25(4), 355–373. https://doi.org/10.1016/s0149-7634(01)00019-7 First citation in articleCrossrefGoogle Scholar

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622 First citation in articleCrossrefGoogle Scholar

  • García-Cordero, I., Esteves, S., Mikulan, E. P., Hesse, E., Baglivo, F. H., Silva, W., García, M. D. C., Vaucheret, E., Ciraolo, C., García, H. S., Adolfi, F., Pietto, M., Herrera, E., Legaz, A., Manes, F., García, A. M., Sigman, M., Bekinschtein, T. A., Ibáñez, A., & Sedeño, L. (2017). Attention, in and out: Scalp-level and intracranial EEG correlates of interoception and exteroception. Frontiers in Neuroscience, 11, Article 411. https://doi.org/10.3389/fnins.2017.00411 First citation in articleCrossrefGoogle Scholar

  • Garfinkel, S. N., Manassei, M. F., Hamilton-Fletcher, G., den Bosch, Y. I., Critchley, H. D., & Engels, M. (2016). Interoceptive dimensions across cardiac and respiratory axes. Philosophical Transactions of the Royal Society B, 371(1708), Article 20160014. https://doi.org/10.1098/rstb.2016.0014 First citation in articleCrossrefGoogle Scholar

  • Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 65–74. https://doi.org/10.1016/j.biopsycho.2014.11.004 First citation in articleCrossrefGoogle Scholar

  • Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. https://doi.org/10.1016/j.clinph.2008.11.029 First citation in articleCrossrefGoogle Scholar

  • Georgiou, E., Mai, S., Fernandez, K. C., & Pollatos, O. (2018). I see neither your fear, nor your sadness–Interoception in adolescents. Consciousness and Cognition, 60, 52–61. https://doi.org/10.1016/j.concog.2018.02.011 First citation in articleCrossrefGoogle Scholar

  • Gu, X., Hof, P. R., Friston, K. J., & Fan, J. (2013). Anterior insular cortex and emotional awareness. Journal of Comparative Neurology, 521(15), 3371–3388. https://doi.org/10.1002/cne.23368 First citation in articleCrossrefGoogle Scholar

  • Hall, M. H., Schulze, K., Rijsdijk, F., Picchioni, M., Ettinger, U., Bramon, E., Freedman, R., Murray, R. M., & Sham, P. (2006). Heritability and reliability of P300, P50 and duration mismatch negativity. Behavior Genetics, 36(6), 845–857. https://doi.org/10.1007/s10519-006-9091-6 First citation in articleCrossrefGoogle Scholar

  • Hautasaari, P., Kujala, U. M., & Tarkka, I. M. (2019). Detecting differences with magnetoencephalography of somatosensory processing after tactile and electrical stimuli. Journal of Neuroscience Methods, 311, 331–337. https://doi.org/10.1016/j.jneumeth.2018.09.014 First citation in articleCrossrefGoogle Scholar

  • Herbert, B. M., Pollatos, O., & Schandry, R. (2007). Interoceptive sensitivity and emotion processing: An EEG study. International Journal of Psychophysiology, 65(3), 214–227. https://doi.org/10.1016/j.ijpsycho.2007.04.007 First citation in articleCrossrefGoogle Scholar

  • Herman, A. M., Palmer, C., Azevedo, R. T., & Tsakiris, M. (2021). Neural divergence and convergence for attention to and detection of interoceptive and somatosensory stimuli. Cortex, 135, 186–206. https://doi.org/10.1016/j.cortex.2020.11.019 First citation in articleCrossrefGoogle Scholar

  • Hermens, D. F., Ward, P. B., Hodge, M. A. R., Kaur, M., Naismith, S. L., & Hickie, I. B. (2010). Impaired MMN/P3a complex in first-episode psychosis: Cognitive and psychosocial associations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(6), 822–829. https://doi.org/10.1016/j.pnpbp.2010.03.019 First citation in articleCrossrefGoogle Scholar

  • Horváth, Á., Vig, L., Ferentzi, E., & Köteles, F. (2021). Cardiac and proprioceptive accuracy are not related to body awareness, perceived body competence, and affect. Frontiers in Psychology, 11, Article 575574. https://doi.org/10.3389/fpsyg.2020.575574 First citation in articleCrossrefGoogle Scholar

  • Iwadate, M., Mori, A., Ashizuka, T., Takayose, M., & Ozawa, T. (2005). Long-term physical exercise and somatosensory event-related potentials. Experimental Brain Research, 160(4), 528–532. https://doi.org/10.1007/s00221-004-2125-5 First citation in articleCrossrefGoogle Scholar

  • James, W. (1884). What is an emotion? Mind, 9(34), 188–205. https://doi.org/10.1093/mind/os-IX.34.188 First citation in articleCrossrefGoogle Scholar

  • Jelinčić, V., Torta, D. M., Van Diest, I., & von Leupoldt, A. (2021). Cross-modal relationships of neural gating with the subjective perception of respiratory and somatosensory sensations. Psychophysiology, 58(1), Article e13710. https://doi.org/10.1111/psyp.13710 First citation in articleCrossrefGoogle Scholar

  • Kathmann, N., Frodl-Bauch, T., & Hegerl, U. (1999). Stability of the mismatch negativity under different stimulus and attention conditions. Clinical Neurophysiology, 110(2), 317–323. https://doi.org/10.1016/s1388-2457(98)00011-x First citation in articleCrossrefGoogle Scholar

  • Kaur, M., Battisti, R. A., Ward, P. B., Ahmed, A., Hickie, I. B., & Hermens, D. F. (2011). MMN/P3a deficits in first episode psychosis: Comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophrenia Research, 130(1–3), 203–209. https://doi.org/10.1016/j.schres.2011.03.025 First citation in articleCrossrefGoogle Scholar

  • Kekoni, J., Hämäläinen, H., Saarinen, M., Gröhn, J., Reinikainen, K., Lehtokoski, A., & Näätänen, R. (1997). Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biological Psychology, 46(2), 125–142. https://doi.org/10.1016/s0301-0511(97)05249-6 First citation in articleCrossrefGoogle Scholar

  • Kiang, M., Braff, D. L., Sprock, J., & Light, G. (2009). The relationship between preattentive sensory processing deficits and age in schizophrenia patients. Clinical Neurophysiology, 120(11), 1949–1957. https://doi.org/10.1016/j.clinph.2009.08.019 First citation in articleCrossrefGoogle Scholar

  • Kida, T., Nishihira, Y., Hatta, A., & Wasaka, T. (2003). Somatosensory N250 and P300 during discrimination tasks. International Journal of Psychophysiology, 48(3), 275–283. https://doi.org/10.1016/S0167-8760(03)00021-7 First citation in articleCrossrefGoogle Scholar

  • Knight, R. T. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383(6597), 256–259. https://doi.org/10.1038/383256a0 First citation in articleCrossrefGoogle Scholar

  • Knight, R. T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15(1), 3–13. https://doi.org/10.1097/00004691-199801000-00003 First citation in articleCrossrefGoogle Scholar

  • Koeppel, C. J., Ruser, P., Kitzler, H., Hummel, T., & Croy, I. (2020). Interoceptive accuracy and its impact on neuronal responses to olfactory stimulation in the insular cortex. Human Brain Mapping, 41(11), 2898–2908. https://doi.org/10.1002/hbm.24985 First citation in articleCrossrefGoogle Scholar

  • Koshiyama, D., Kirihara, K., Tada, M., Nagai, T., Fujioka, M., Usui, K., Araki, T., & Kasai, K. (2020). Reduced auditory mismatch negativity reflects impaired deviance detection in schizophrenia. Schizophrenia Bulletin, 46(4), 937–946. https://doi.org/10.1093/schbul/sbaa006 First citation in articleCrossrefGoogle Scholar

  • Krajnik, J., Kollndorfer, K., Notter, L. A., Mueller, C. A., & Schopf, V. (2015). The impact of olfactory dysfunction on interoceptive awareness. Psychophysiology, 52(2), 263–268. https://doi.org/10.1111/psyp.12316 First citation in articleCrossrefGoogle Scholar

  • Krauel, K., Schott, P., Sojka, B., Pause, B. M., & Ferstl, R. (1999). Is there a mismatch negativity analogue in the olfactory event-related potential? Journal of Psychophysiology, 13(1), 49–55. https://doi.org/10.1027/0269-8803.13.1.49 First citation in articleLinkGoogle Scholar

  • Kremláček, J., Kreegipuu, K., Tales, A., Astikainen, P., Poldver, N., Näätänen, R., & Stefanics, G. (2016). Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex, 80, 76–112. https://doi.org/10.1016/j.cortex.2016.03.017 First citation in articleCrossrefGoogle Scholar

  • Kujala, T., Kallio, J., Tervaniemi, M., & Näätänen, R. (2001). The mismatch negativity as an index of temporal processing in audition. Clinical Neurophysiology, 112(9), 1712–1719. https://doi.org/10.1016/s1388-2457(01)00625-3 First citation in articleCrossrefGoogle Scholar

  • Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biological Psychology, 74(1), 1–19. https://doi.org/10.1016/j.biopsycho.2006.06.001 First citation in articleCrossrefGoogle Scholar

  • Lange, C. G. (1912). The mechanism of the emotion. In B. RandEd., The classical psychologists (pp. 672–684). Houghton Mifflin. First citation in articleGoogle Scholar

  • Lew, H. L., Gray, M., & Poole, J. H. (2007). Temporal stability of auditory event-related potentials in healthy individuals and patients with traumatic brain injury. Journal of Clinical Neurophysiology, 24(5), 392–397. https://doi.org/10.1097/WNP.0b013e31814a56e3 First citation in articleCrossrefGoogle Scholar

  • Light, G., Swerdlow, N. R., & Braff, D. L. (2007). Preattentive sensory processing as indexed by the MMN and P3a brain responses is associated with cognitive and psychosocial functioning in healthy adults. Journal of Cognitive Neuroscience, 19(10), 1624–1632. https://doi.org/10.1162/jocn.2007.19.10.1624 First citation in articleCrossrefGoogle Scholar

  • Lyyra, P., & Parviainen, T. (2018). Behavioral inhibition underlies the link between interoceptive sensitivity and anxiety-related temperamental traits. Frontiers in Psychology, 9, 1026. https://doi.org/10.3389/fpsyg.2018.01026 First citation in articleCrossrefGoogle Scholar

  • Muniak, M. A., Ray, S., Hsiao, S. S., Dammann, J. F., & Bensmaia, S. J. (2007). The neural coding of stimulus intensity: Linking the population response of mechanoreceptive afferents with psychophysical behavior. Journal of Neuroscience, 27(43), 11687–11699. https://doi.org/10.1523/JNEUROSCI.1486-07.2007 First citation in articleCrossrefGoogle Scholar

  • Musall, S., Haiss, F., Weber, B., & von der Behrens, W. (2017). Deviant processing in the primary somatosensory cortex. Cerebral Cortex, 27(1), 863–876. https://doi.org/10.1093/cercor/bhv283 First citation in articleGoogle Scholar

  • Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329. https://doi.org/10.1016/0001-6918(78)90006-9 First citation in articleCrossrefGoogle Scholar

  • Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent process in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25–32. https://doi.org/10.1111/j.1469-8986.2005.00256.x First citation in articleCrossrefGoogle Scholar

  • Näätänen, R., Kujala, T., & Winkler, I. (2011). Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 48(1), 4–22. https://doi.org/10.1111/j.1469-8986.2010.01114.x First citation in articleCrossrefGoogle Scholar

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026 First citation in articleCrossrefGoogle Scholar

  • Naeije, G., Vaulet, T., Wens, V., Marty, B., Goldman, S., & De Tiège, X. (2016). Multilevel cortical processing of somatosensory novelty: A magnetoencephalography study. Frontiers in Human Neuroscience, 10, 259. https://doi.org/10.3389/fnhum.2016.00259 First citation in articleCrossrefGoogle Scholar

  • Naeije, G., Vaulet, T., Wens, V., Marty, B., Goldman, S., & De Tiège, X. (2018). Neural basis of early somatosensory change detection: A magnetoencephalography study. Brain Topography, 31(2), 242–256. https://doi.org/10.1007/s10548-017-0591-x First citation in articleCrossrefGoogle Scholar

  • Nirenberg, S., Bomash, I., Pillow, J. W., & Victor, J. D. (2010). Heterogeneous response dynamics in retinal ganglion cells: The interplay of predictive coding and adaptation. Journal of Neurophysiology, 103(6), 3184–3194. https://doi.org/10.1152/jn.00878.2009 First citation in articleCrossrefGoogle Scholar

  • Olofsson, J. K., Ericsson, E., & Nordin, S. (2008). Comparison of chemosensory, auditory, and visual event-related potential amplitudes. Scandinavian Journal of Psychology, 49(3), 231–237. https://doi.org/10.1111/j.1467-9450.2008.00647.x First citation in articleCrossrefGoogle Scholar

  • Opitz, B., Rinne, T., Mecklinger, A., Von Cramon, D. Y., & Schroeger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 15(1), 167–174. https://doi.org/10.1006/nimg.2001.0970 First citation in articleCrossrefGoogle Scholar

  • Ostwald, D., Spitzer, B., Guggenmos, M., Schmidt, T. T., Kiebel, S. J., & Blankenburg, F. (2012). Evidence for neural encoding of Bayesian surprise in human somatosensation. NeuroImage, 62(1), 177–188. https://doi.org/10.1016/j.neuroimage.2012.04.050 First citation in articleCrossrefGoogle Scholar

  • Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88(2), 109–123. https://doi.org/10.1016/j.ijpsycho.2013.03.015 First citation in articleCrossrefGoogle Scholar

  • Pause, B. M., & Krauel, K. (2000). Chemosensory event-related potentials (CSERP) as a key to the psychology of odors. International Journal of Psychophysiology, 36(2), 105–122. https://doi.org/10.1016/s0167-8760(99)00105-1 First citation in articleCrossrefGoogle Scholar

  • Pekkonen, E., Rinne, T., & Näätänen, R. (1995). Variability and replicability of the mismatch negativity. Electroencephalography and Clinical Neurophysiology, 96(6), 546–554. https://doi.org/10.1016/0013-4694(95)00148-r First citation in articleCrossrefGoogle Scholar

  • Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389–443. https://doi.org/10.1093/brain/60.4.389 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 First citation in articleCrossrefGoogle Scholar

  • Pollatos, O., Gramann, K., & Schandry, R. (2007). Neural Systems Connecting Interoceptive Awareness and Feelings. Human Brain Mapping, 28(1), 9–18. https://doi.org/10.1002/hbm.20258 First citation in articleCrossrefGoogle Scholar

  • Pollatos, O., Kirsch, W., & Schandry, R. (2005). On the relationship between interoceptive awareness, emotional experience, and brain processes. Cognitive Brain Research, 25(3), 948–962. https://doi.org/10.1016/j.cogbrainres.2005.09.019 First citation in articleCrossrefGoogle Scholar

  • Pollatos, O., Matthias, E., & Schandry, R. (2007). Heartbeat perception and P300 amplitude in a visual oddball paradigm. Clinical Neurophysiology, 118(10), 2248–2253. https://doi.org/10.1016/j.clinph.2007.06.057 First citation in articleCrossrefGoogle Scholar

  • Recasens, M., Grimm, S., Capilla, A., Nowak, R., & Escera, C. (2014). Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cerebral Cortex, 24(1), 143–153. https://doi.org/10.1093/cercor/bhs295 First citation in articleCrossrefGoogle Scholar

  • Restuccia, D., Della Marca, G., Valeriani, M., Leggio, M. G., & Molinari, M. (2007). Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain, 130(1), 276–287. https://doi.org/10.1093/brain/awl236 First citation in articleCrossrefGoogle Scholar

  • Restuccia, D., Zanini, S., Cazzagon, M., Del Piero, I., Martucci, L., & Della Marca, G. (2009). Somatosensory mismatch negativity in healthy children. Developmental Medicine & Child Neurology, 51(12), 991–998. https://doi.org/10.1111/j.1469-8749.2009.03367.x First citation in articleCrossrefGoogle Scholar

  • Ring, C., Brener, J., Knapp, K., & Mailloux, J. (2015). Effects of heartbeat feedback on beliefs about heart rate and heartbeat counting: A cautionary tale about interoceptive awareness. Biological Psychology, 104, 193–198. https://doi.org/10.1016/j.biopsycho.2014.12.010 First citation in articleCrossrefGoogle Scholar

  • Rinne, T., Degerman, A., & Alho, K. (2005). Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study. NeuroImage, 26(1), 66–72. https://doi.org/10.1016/j.neuroimage.2005.01.017 First citation in articleCrossrefGoogle Scholar

  • Roach, B. J., Carrión, R. E., Hamilton, H. K., Bachman, P., Belger, A., Duncan, E., Johannesen, J., Light, G. A., Niznikiewicz, M., Addington, J., Bearden, C. E., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., McGlashan, T. H., Perkins, D. O., Seidman, L., Tsuang, M., Walker, E. F., … Mathalon, D. H. (2020). Reliability of mismatch negativity event-related potentials in a multisite, traveling subjects study. Clinical Neurophysiology, 131(12), 2899–2909. https://doi.org/10.1016/j.clinph.2020.09.027 First citation in articleCrossrefGoogle Scholar

  • Ruohonen, E. M., & Astikainen, P. (2017). Brain responses to sound intensity changes dissociate depressed participants and healthy controls. Biological Psychology, 127, 74–81. https://doi.org/10.1016/j.biopsycho.2017.05.008 First citation in articleCrossrefGoogle Scholar

  • Ruohonen, E. M., Kattainen, S., Li, X., Taskila, A.-E., Ye, C., & Astikainen, P. (2020). Event-related potentials to changes in sound intensity demonstrate alterations in brain function related to depression and aging. Frontiers in Human Neuroscience, 14, Article 98. https://doi.org/10.3389/fnhum.2020.00098 First citation in articleCrossrefGoogle Scholar

  • Schandry, R. (1981). Heartbeat perception and emotional experience. Psychophysiology, 18(4), 483–488. https://doi.org/10.1111/j.1469-8986.1981.tb02486.x First citation in articleCrossrefGoogle Scholar

  • Schröger, E., Giard, M. H., & Wolff, C. (2000). Auditory distraction: Event-related potential and behavioral indices. Clinical Neurophysiology, 111(8), 1450–1460. https://doi.org/10.1016/s1388-2457(00)00337-0 First citation in articleCrossrefGoogle Scholar

  • Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11), 565–573. https://doi.org/10.1016/j.tics.2013.09.007 First citation in articleCrossrefGoogle Scholar

  • Shen, G., Smyk, N. J., Meltzoff, A. N., & Marshall, P. J. (2018). Using somatosensory mismatch responses as a window into somatotopic processing of tactile stimulation. Psychophysiology, 55(5), Article e13030. https://doi.org/10.1111/psyp.13030 First citation in articleCrossrefGoogle Scholar

  • Shen, G., Weiss, S. T., Meltzoff, A. N., & Marshall, P. J. (2018). The somatosensory mismatch negativity as a window into body representations in infancy. International Journal of Psychophysiology, 134, 144–150. https://doi.org/10.1016/j.ijpsycho.2018.10.013 First citation in articleCrossrefGoogle Scholar

  • Sherrington, C. S. (1948). The integrative action of the nervous system. Cambridge University Press. First citation in articleGoogle Scholar

  • Shinozaki, N., Yabe, H., Sutoh, T., Hiruma, T., & Kaneko, S. (1998). Somatosensory automatic responses to deviant stimuli. Cognitive Brain Research, 7(2), 165–171. https://doi.org/10.1016/s0926-6410(98)00020-2 First citation in articleCrossrefGoogle Scholar

  • Spackman, L. A., Boyd, S. G., & Towell, A. (2007). Effects of stimulus frequency and duration on somatosensory discrimination responses. Experimental Brain Research, 177(1), 21–30. https://doi.org/10.1007/s00221-006-0650-0 First citation in articleCrossrefGoogle Scholar

  • Spackman, L. A., Towell, A., & Boyd, S. G. (2010). Somatosensory discrimination: An intracranial event-related potential study of children with refractory epilepsy. Brain Research, 1310, 68–76. https://doi.org/10.1016/j.brainres.2009.10.072 First citation in articleCrossrefGoogle Scholar

  • Stefanics, G., Astikainen, P., & Czigler, I. (2015). Visual mismatch negativity (vMMN): A prediction error signal in the visual modality. Frontiers in Human Neuroscience, 8, Article 1074. https://doi.org/10.3389/fnhum.2014.01074 First citation in articleCrossrefGoogle Scholar

  • Stefanics, G., Kremlácek, J., & Czigler, I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8, Article 666. https://doi.org/10.3389/fnhum.2014.00666 First citation in articleCrossrefGoogle Scholar

  • Strömmer, J. M., Põldver, N., Waselius, T., Kirjavainen, V., Järveläinen, S., Björksten, S., Tarkka, I. M., & Astikainen, P. (2017). Automatic auditory and somatosensory brain responses in relation to cognitive abilities and physical fitness in older adults. Scientific Reports, 7, Article 13699. https://doi.org/10.1038/s41598-017-14139-9 First citation in articleCrossrefGoogle Scholar

  • Strömmer, J. M., Tarkka, I. M., & Astikainen, P. (2014). Somatosensory mismatch response in young and elderly adults. Frontiers in Aging Neuroscience, 6, 1–9. https://doi.org/10.3389/fnagi.2014.00293 First citation in articleGoogle Scholar

  • Suzuki, K., Garfinkel, S. N., Critchley, H. D., & Seth, A. K. (2013). Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia, 51(13), 2909–2917. https://doi.org/10.1016/j.neuropsychologia.2013.08.014 First citation in articleCrossrefGoogle Scholar

  • Tarkka, I. M., Savic, A., Pekkola, E., Rottensteiner, M., & Leskinen, T. (2016). Long-term physical activity modulates brain processing of somatosensory stimuli: Evidence from young male twins. Biological Psychology, 117, 1–7. https://doi.org/10.1016/j.biopsycho.2016.02.001 First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M., Lehtokoski, A., Sinkkonen, J., Virtanen, J., Ilmoniemi, R. J., & Näätänen, R. (1999). Test-retest reliability of mismatch negativity for duration, frequency and intensity changes. Clinical Neurophysiology, 110(8), 1388–1393. https://doi.org/10.1016/s1388-2457(99)00108-x First citation in articleCrossrefGoogle Scholar

  • Vaitl, D. (1996). Interoception. Biological Psychology, 42(1–2), 1–27. https://doi.org/10.1016/0301-0511(95)05144-9 First citation in articleCrossrefGoogle Scholar

  • Valkonen-Korhonen, M., Purhonen, M., Tarkka, I. M., Sipilä, P., Partanen, J., Karhu, J., & Lehtonen, J. (2003). Altered auditory processing in acutely psychotic never-medicated first-episode patients. Cognitive Brain Research, 17(3), 747–758. https://doi.org/10.1016/S0926–6410(03)00199-X First citation in articleCrossrefGoogle Scholar

  • Von der Behrens, W., Bäuerle, P., Kössl, M., & Gaese, B. H. (2009). Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. Journal of Neuroscience, 29(44), 13837–13849. https://doi.org/10.1523/JNEUROSCI.3475-09.2009 First citation in articleCrossrefGoogle Scholar

  • Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20754–20759. https://doi.org/10.1073/pnas.1117807108 First citation in articleCrossrefGoogle Scholar

  • Whitehead, W., Drescher, V. M., Heiman, P., & Blackwell, B. (1977). Relation of heart rate control to heartbeat perception. Biofeedback and Self-Regulation, 2(4), 371–392. First citation in articleCrossrefGoogle Scholar

  • Wiens, S., Mezzacappa, E. S., & Katkin, E. S. (2000). Heartbeat detection and the experience of emotions. Cognition and Emotion, 14(3), 417–427. https://doi.org/10.1080/026999300378905 First citation in articleCrossrefGoogle Scholar

  • Wiens, S., & Palmer, S. N. (2001). Quadratic trend analysis and heartbeat detection. Biological Psychology, 58(2), 159–175. https://doi.org/10.1016/s0301-0511(01)00110-7 First citation in articleCrossrefGoogle Scholar

  • Wronka, E., Kaiser, J., & Coenen, A. M. L. (2012). Neural generators of the auditory evoked potential components P3a and P3b. Acta Neurobiologiae Experimentalis, 72(1), 51–64. First citation in articleGoogle Scholar

  • Xu, Q., Ye, C., Hämäläinen, J., Ruohonen, E. M., Li, X., & Astikainen, P. (2021). Magnetoencephalography responses to unpredictable and predictable rare somatosensory stimuli in healthy adult humans. Frontiers in Human Neuroscience, 15, Article 641273. https://doi.org/10.3389/fnhum.2021.641273 First citation in articleCrossrefGoogle Scholar

  • Zhao, C., Valentini, E., & Hu, L. (2015). Functional features of crossmodal mismatch responses. Experimental Brain Research, 233(2), 617–629. https://doi.org/10.1007/s00221-014-4141-4 First citation in articleCrossrefGoogle Scholar