Skip to main content
Original Article

What Accounts for Individual and Gender Differences in the Multi-Digit Number Processing of Primary School Children?

Published Online:https://doi.org/10.1027/2151-2604/a000099

Gender differences in numerical domains have frequently been reported, but typically only from high-school age onwards. Recently, we found performance differences in favor of primary school boys in multi-digit number processing. Several underlying factors have been suggested to explain general differences in multi-digit number processing (such as visual-spatial working memory capacity), gender differences in mathematics (such as attitudes toward mathematics), and gender differences in multi-digit number processing (such as visual-spatial abilities). To date, no study has tested the concurrent impact of these factors on the development of multi-digit number processing in primary school children; thus, we applied structural equation modeling to a longitudinal dataset of 140 primary school children. Our main result was that gender exerted the strongest influence on multi-digit number processing, which was partly mediated by attitudes toward mathematics. Furthermore, general visual-spatial abilities (but not visual-spatial working memory) had a strong impact on individual differences in multi-digit number processing. These results are discussed in light of the psychobiosocial view.

References

  • Akaike, H. (1987). Factor analysis and AIC. Pschometrika, 52, 317–332. First citation in articleCrossrefGoogle Scholar

  • Bachot, J. , Gevers, W. , Fias, W. , Roeyers, H. (2005). Number sense in children with visuospatial disabilities: Orientation on the mental number line. Psychology Science, 47, 172–183. First citation in articleGoogle Scholar

  • Barrouillet, P. , Camos, V. , Perruchet, P. , Seron, X. (2004). ADAPT: A developmental, asemantic and procedural model for transcoding from verbal to Arabic numerals. Psychological Review, 111, 368–394. First citation in articleCrossrefGoogle Scholar

  • Beery, K. E. (1997). The Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI) with supplemental developmental tests of visual perception and motor coordination. Parippany, NJ: Modern Curriculum Press. First citation in articleGoogle Scholar

  • Bentler, P. M. (1990). Comparative fit indices in structural models. Psychological Bulletin, 112, 400–404. First citation in articleCrossrefGoogle Scholar

  • Browne, M. W. , Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, J. S. Long, (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage. First citation in articleGoogle Scholar

  • Carr, M. , Hettinger Steiner, H. , Kyser, B. , & Biddlecomb, B. (2008). A comparison of early emerging gender differences in mathematical competency. Learning and Individual Differences, 18, 61–75. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. L. , Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test-scores across diverse samples. Developmental Psychology, 31, 697–705. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. L. , Pezaris, E. (1999). Evidence in support of a model that predicts how biological and environmental factors interact to influence spatial skills. Developmental Psychology, 35, 1237–1247. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. L. , Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32, 28–57. First citation in articleCrossrefGoogle Scholar

  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Dissertation Abstracts International, 34, 891B. (University Microfilms No. AA105-77717). First citation in articleGoogle Scholar

  • Denissen, J. J. A. , Zarrett, N. R. , Eccles, J. S. (2007). I like to do it, I’m able, and I know I am: Longitudinal couplings between domain-specific achievement, self-concept, and interest. Child Development, 78, 430–447. First citation in articleCrossrefGoogle Scholar

  • Eccles, J. S. , Jacobs, J. E. (1986). Social forces shape math attitudes and performance. Journal of Women in Culture and Society, 11, 367–380. First citation in articleCrossrefGoogle Scholar

  • Fennema, E. , Carpenter, T. P. , Jakobs, V. R. , Franke, M. L. , Lewi, L. W. (1998). A longitudinal study of gender differences in young children’s mathematical thinking. Educational Researcher, 27, 16–31. First citation in articleCrossrefGoogle Scholar

  • Gallagher, A. M. , De Lisi, R. , Holst, P. C. , Gillicuddy-De Lisi, A. V. , Morely, M. , & Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75, 165–190. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsyschological, and genetic components. Psychological Bulletin, 114, 345–362. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (1996). Sexual selection and sex differences in mathematical abilities. Behavioral and Brain Sciences, 19, 229–284. First citation in articleCrossrefGoogle Scholar

  • Halpern, D. F. (1997). Sex differences in intelligence. Implications for education. American Psychologist, 52, 1091–1102. First citation in articleCrossrefGoogle Scholar

  • Hartje, W. (1987). The effects of spatial disorders on arithmetical skills. In G. Deloche, X. Seron, (Eds.), Mathematical disabilities: A cognitive neuropsychological perspective (pp. 121–135). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Hoyle, R. H. (1995). Structural equation modelling. Concepts, issues and applications. Thousand Oaks, CA: Sage. First citation in articleGoogle Scholar

  • Hyde, J. S. , Fennema, E. , Lamon, S. J. (1990). Gender differences in mathematics performance – a metaanalysis. Psychological Bulletin, 107, 139–155. First citation in articleCrossrefGoogle Scholar

  • IEA (1996). Third International Mathematics and Science Study (TIMSS III). TIMSS International Study Center Boston College, Chestnut Hill, MA. First citation in articleGoogle Scholar

  • IEA (2007). Third International Mathematics and Science Study (TIMSS 2007). TIMSS International Study Center Boston College, Chestnut Hill, MA. First citation in articleGoogle Scholar

  • Johnson, E. S. (1984). Sex differences in problem solving. Journal of Educational Psychology, 76, 1359–1371. First citation in articleCrossrefGoogle Scholar

  • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analyses. Psychometrika, 34, 183–202. First citation in articleCrossrefGoogle Scholar

  • Jöreskog, K. G. , Sörbom, D. (2005). Lisrel 8.72. Lincolnwood, IL: Scientific Software International. First citation in articleGoogle Scholar

  • Kaufmann, L. , Nuerk, H.-C. , Graf, M. , Krinzinger, H. , Delazer, M. , Willmes, K. (2009). TEDI-MATH. Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse [TEDI-MATH. A test for numerical and calculation skills from kindergarden to 3rd grade]. Bern, Switzerland: Verlag Hans Huber. First citation in articleGoogle Scholar

  • Kimura, D. (2000). Sex and cognition. Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Krinzinger, H. , Kaufmann, L. , Dowker, A. , Thomas, G. , Graf, M. , Nuerk, H.-C. , Willmes, K. (2007). Deutschsprachige Version des Fragebogens für Rechenangst (FRA) für 6- bis 9-jährige Kinder [German version of the math anxiety questionnaire MAQ (FRA) for 6- to 9-year-old children]. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 35, 341–351. First citation in articleLinkGoogle Scholar

  • Krinzinger, H. (2011). The role of multi-digit numbers in the development of numeracy. Saarbrücken, Germany: Südwestdeutscher Verlag für Hochschulschriften. First citation in articleGoogle Scholar

  • Krinzinger, H. , Kaufmann, L. , Willmes, K. (2009). Math anxiety and math ability in early primary school years. Journal of Psychoeducational Assessment, 27, 206–225. First citation in articleCrossrefGoogle Scholar

  • Lindberg, S. M. , Hyde, J. S. , Petersen, J. L. , Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123–1135. First citation in articleCrossrefGoogle Scholar

  • Linn, M. C. , Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498. First citation in articleCrossrefGoogle Scholar

  • Lonnemann, J. , Krinzinger, H. , Knops, A. , Willmes, K. (2008). Spatial representations of numbers in children and their connection with calculation abilities. Cortex, 44, 420–428. First citation in articleCrossrefGoogle Scholar

  • McDonald, R. P. , Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82. First citation in articleCrossrefGoogle Scholar

  • Mills, C. J. , Abland, K. E. , Stumpf, H. (1993). Gender differences in academically talented young students’ mathematical reasoning: Patterns across age and subskills. Journal of Educational Psychology, 85, 340–346. First citation in articleCrossrefGoogle Scholar

  • Newman, S. D. , Pruce, B. , Rusia, A. , & Burns, T. Jr. (2010). The effect of strategy on problem solving: An fMRI study. Journal of Problem Solving, 3, 1–26. First citation in articleCrossrefGoogle Scholar

  • Nuerk, H.-C. , Weger, U. , & Willmes, K. (2001). Decade breaks in the mental number line? Putting tens and units back into different bins. Cognition, 82, 25–33. First citation in articleCrossrefGoogle Scholar

  • Raghubar, K. P. , Barnes, M. A. , Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. First citation in articleCrossrefGoogle Scholar

  • Robinson, N. M. , Abbott, R. D. , Berninger, V. W. , Busse, J. (1996). The structure of abilities in math-precocious young children: Gender similarities and differences. Journal of Educational Psychology, 88, 341–352. First citation in articleCrossrefGoogle Scholar

  • Robinson, N. M. , Abbott, R. D. , Berninger, V. W. , Busse, J. , & Mukhopadhyay, S. (1997). Developmental changes in mathematically precocious young children: Longitudinal and gender effects. Gifted Child Quarterly, 41, 145–158. First citation in articleCrossrefGoogle Scholar

  • Rosselli, M. , Ardila, A. , Matute, E. , Inozemtseva, O. (2008). Gender differences and cognitive correlates of mathematical skills in school-aged children. Child Neuropsychology, 15, 216–231. First citation in articleCrossrefGoogle Scholar

  • Rourke, B. P. (1989). Nonverbal learning disabilities: The syndrome and the model. New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Rourke, B. P. , Finlayson, M. A. J. (1978). Neuropsychological significance of variations in patterns of academic performance: Verbal and visual-spatial abilities. Journal of Abnormal Child Psychology, 6, 121–133. First citation in articleCrossrefGoogle Scholar

  • Rourke, B. P. , Strang, J. D. (1978). Neuropsychological significance of variations in patterns of academic performance: Motor, psycho-motor, and tactile-perceptual abilities. Journal of Pediatric Psychology, 3, 62–66. First citation in articleCrossrefGoogle Scholar

  • Shevlin, M. , Miles, J. N. V. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25, 85–90. First citation in articleCrossrefGoogle Scholar

  • Schumacker, E. R. , Lomax, R. G. (2004). A beginner’s guide to structural equation modelling (2nd ed.). Mahwah, NJ: Erlbaum. First citation in articleCrossrefGoogle Scholar

  • Strang, J. D. , Rourke, B. P. (1985). Arithmetic disability subtypes: The neuropsychological significance of specific arithmetical impairment in childhood. In B. P. Rourke, (Ed.), Neuropsychology of learning disabilities: Essentials of subtype analysis (pp. 167–183). New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Thomas, G. , Dowker, A. (2000, September). Mathematics anxiety and related factors in young children. Paper presented at British Psychological Society Developmental Section Conference, Bristol. First citation in articleGoogle Scholar

  • Van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39, 496–506. First citation in articleCrossrefGoogle Scholar

  • Zuber, J. , Pixner, S. , Moeller, K. , & Nuerk, H.-C. (2009). On the language specificity of basic number processing: Transcoding in a language with inversion and its relation to working memory capacity. Journal of Experimental Child Psychology, 102, 60–77. First citation in articleCrossrefGoogle Scholar