Skip to main content
Original Article

Evaluation of a Tunnel-in-the-Sky Head-Up Display Design for Curved Approaches Using Eye-Tracking

Published Online:https://doi.org/10.1027/2192-0923/a000177

Abstract. Head-up displays (HUD) assist pilots, especially in the approach and landing phase. In this paper we compared pilots’ eye-tracking behavior between a pathway-in-the-sky layout versus the more conventional two-dimensional symbology in an HUD in a fixed-based cockpit simulator. In particular, we wanted to assess how visual attention was distributed within each layout (tunnel and standard). Performance and eye-tracking data were recorded, as well as workload and situation awareness measures. Results showed that the tunnel-in-the-sky symbology provided a very high tracking performance with low perceived workload and high perceived situational awareness. The analysis of the eye-tracking data revealed possible attentional tunneling with the tunnel-in-the-sky symbology and large differences between the displays in the distribution of visual attention.

References

  • Airbus. (2017). A318/A319/A320/A321 Flight Crew Techniques Manual. Reference: LFO A318/A319/A320/A321 FLEET FCTM. Leiden: Airbus First citation in articleGoogle Scholar

  • Bellenkes, A. H., Wickens, C. D., & Kramer, A. F. (1997). Visual scanning and pilot expertise: the role of attentional flexibility and mental model development. Aviation, Space, and Environmental Medicine, 68, 569–579. First citation in articleGoogle Scholar

  • Beringer, D.B. (2000). Development of highway-in-the-sky displays for flight-path guidance: History, performance results, guidelines. In HFESEd., Proceedings of the IEA 2000/HFES 2000 Congress (pp. 21–24). San Diego, CA: Human Factors and Ergonomics Society. First citation in articleGoogle Scholar

  • Beringer, D. B., & Ball, J. D. (2001). A comparison of pilot navigation performance using conventional instrumentation, head-down, and head-up highway-in-the-sky primary flight displays. Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting, 45, 16–20. https://doi.org/10.1177/154193120104500203 First citation in articleCrossrefGoogle Scholar

  • Fadden, S., Ververs, P. M., & Wickens, C. D. (2001). Pathway HUDs: Are they viable? Human Factors, 43(2), 173–193. https://doi.org/10.1518/001872001775900841 First citation in articleCrossrefGoogle Scholar

  • Fischer, E., Haines, R. F., & Price, T. A. (1980). Cognitive issues in head-up displays (NASA TP-1711). Washington, DC: NASA. First citation in articleGoogle Scholar

  • Geister, R., & Kapol, T. (2013). Cockpit visualization of curved approaches based on GBAS. Navigation, 60(4), 305–317. First citation in articleCrossrefGoogle Scholar

  • Grunwald, A. J. (1996). Improved tunnel display for curved trajectory following: Experimental evaluation. Journal of Guidance, Control and Dynamics, 19(2), 378–384. First citation in articleCrossrefGoogle Scholar

  • Grunwald, A. J., Robertson, J. B., & Hatfield, J. J. (1980). Evaluation of a computer-generated perspective tunnel display for flight-path following (NASA Technical Paper No. TP-1736). Washington, DC: NASA. First citation in articleGoogle Scholar

  • Grunwald, A. J., Robertson, J. B., & Hatfield, J. J. (1981). Experimental evaluation of a perspective tunnel display for three-dimensional helicopter approaches. Journal of Guidance, Control and Dynamics, 4(5), 623–631. First citation in articleCrossrefGoogle Scholar

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. HancockN. MeshkatiEds., Human Mental Workload (pp. 139–183). Amsterdam, The Netherlands: North Holland Press. First citation in articleGoogle Scholar

  • Haskell, I. D., & Wickens, C. D. (1993). Two-and three-dimensional displays for aviation: A theoretical and empirical comparison. The International Journal of Aviation Psychology, 3(2), 87–109. https://doi.org/10.1207/s15327108ijap0302_1 First citation in articleCrossrefGoogle Scholar

  • ICAO. (2013). ICAO Doc 9613 AN/937: Performance-based navigation (PBN) manual. Montréal, Canada: ICAO. First citation in articleGoogle Scholar

  • Inhoff, A. W., & Radach, R. (1998). Definition and computation of oculomotor measures in the study of cognitive processes. In G. UnderwoodEd., Eye guidance in reading, driving and scene perception (pp. 29–53). Oxford, UK: Elsevier. First citation in articleGoogle Scholar

  • Kramer, L. J., & Busquets, A. M. (2000). Comparison of pilots’ situational awareness while monitoring autoland approaches using conventional and advanced flight display formats (NASA/TP-2000–210284). Hampton, VA: Langley Research Center First citation in articleGoogle Scholar

  • Martin-Emerson, R., & Wickens, C. D. (1997). Superimposition, symbology, visual attention, and the head-up display. Human Factors, 39(4), 581–601. https://doi.org/10.1518/001872097778667933 First citation in articleCrossrefGoogle Scholar

  • Mulder, M., Kraeger, A. M., & Soijer, M. W. (2002). Delft aerospace tunnel-in-the-sky flight tests. Paper presented at the AIAA Guidance, Navigation & Control Conference, Monterey, CA. First citation in articleGoogle Scholar

  • Parrish, R. V., Busquets, A. M., Williams, S. P., & Nold, D. E. (1994). Spatial awareness comparisons between large-screen, integrated pictorial displays and conventional EFIS displays during simulated landing approaches (Vol. 3467). Hampton, VA: National Aeronautics and Space Administration, Langley Research Center. First citation in articleGoogle Scholar

  • Peißl, S., Wickens, C. D., & Baruah, R. (2018). Eye-tracking measures in aviation: A selective literature review. The International Journal of Aerospace Psychology, 28(3–4), 98–112. https://doi.org/10.1080/24721840.2018.1514978 First citation in articleCrossrefGoogle Scholar

  • Reising, J. M., Liggett, K. K., Solz, T. J., & Hartsock, D. C. (1995). A comparison of two head up display formats used to fly curved instrument approaches. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 39(1), 1–4. First citation in articleCrossrefGoogle Scholar

  • Rötting, M. (2001). Parametersystematik der Augen-und Blickbewegungen für arbeitswissenschaftliche Untersuchungen [Parameter classification of eye and gaze movement in ergonomic studies]. Germany: Shaker. First citation in articleGoogle Scholar

  • Sarter, N. B., Mumaw, R. J., & Wickens, C. D. (2007). Pilots’ monitoring strategies and performance on automated flight decks: An empirical study combining behavioral and eye-tracking data. Human Factors, 49, 347–357. https://doi.org/10.1518/001872007X196685 First citation in articleCrossrefGoogle Scholar

  • Schaudt, W. A., Caufield, K. J., & Dyre, B. P. (2002). Effects of a virtual air speed error indicator on guidance accuracy and eye movement control during simulated flight. Proceedings of the 46th Human Factors and Ergonomics Society Annual Meeting, 47, 1594–1598. First citation in articleCrossrefGoogle Scholar

  • Schneider, M. (2014). Evaluation of satellite based instrument approaches with curved tracks. Diploma Thesis, Technical University Dresden, Department of Aircraft Technology, Institute of Mechanical Engineering, DLR Report 112-2014/41. First citation in articleGoogle Scholar

  • Selcon, S. J., & Taylor, R. M. (1989). Evaluation of the situational awareness rating technique (SART) as a tool for aircrew systems design. In AGARDEd., Proceedings of the AGARD AMP Symposium on Situational Awareness in Aerospace Operations, CP478 (pp. 72–79). Seuilly-sur Seine, France: NATO AGARD. First citation in articleGoogle Scholar

  • Snow, M. P., & French, G. A. (2002). Effects of primary flight symbology on workload and situation awareness in a head-up synthetic vision display. In IEEEEd., Proceedings of the 21st Digital Avionics Systems Conference (2) (pp. 11C5–1). Piscataway, IL: IEEE. First citation in articleGoogle Scholar

  • Sodhi, M., Reimer, B., Cohen, J. L., Vastenburg, E., Kaars, R., & Kirschenbaum, S. (2002). On-road driver eye movement tracking using head-mounted devices. In ACMEd., Proceedings of the 2002 Symposium on Eye Tracking Research & Applications (pp. 61–68). New York, NY: ACM. First citation in articleGoogle Scholar

  • Ververs, P. M., & Wickens, C. D. (1998). Head-up displays: Effects of clutter, display intensity, and display location on pilot performance. The International Journal of Aviation Psychology, 8(4), 377–403. https://doi.org/10.1207/s15327108ijap0804_4 First citation in articleCrossrefGoogle Scholar

  • Ververs, P. M., & Wickens, C. D. (2000). Designing head-up displays (HUDs) to support flight path guidance while minimizing effects of cognitive tunneling. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(13), 45–48. First citation in articleCrossrefGoogle Scholar

  • Wickens, C. D., Haskell, I., & Harte, K. (1989). Ergonomic design for perspective flight-path displays. IEEE Control Systems Magazine, 9(4), 3–8. https://doi.org/10.1109/37.24831 First citation in articleCrossrefGoogle Scholar

  • Williams, K. W. (2002). Impact of aviation highway-in-the-sky displays on pilot situation awareness. Human Factors, 44(1), 18–27. https://doi.org/10.1518/0018720024494801 First citation in articleCrossrefGoogle Scholar

  • Zelinsky, G. J., Rao, R. P., Hayhoe, M. M., & Ballard, D. H. (1997). Eye movements reveal the spatiotemporal dynamics of visual search. Psychological Science, 8(6), 448–453. https://doi.org/10.1111/j.1467-9280.1997.tb00459.x First citation in articleCrossrefGoogle Scholar

  • Ziv, G. (2016). Gaze behavior and visual attention: A review of eye tracking studies in aviation. The International Journal of Aviation Psychology, 26(3–4), 75–104. https://doi.org/10.1080/10508414.2017.1313096 First citation in articleCrossrefGoogle Scholar