Skip to main content
Aktuelle Kontroverse

Epigenetik–Revolution der Entwicklungspsychopathologie?

Published Online:https://doi.org/10.1026/0942-5403/a000091

Die Epigenetik, die sich mit der Bedeutung der Gene im Kontext der menschlichen Entwicklung beschäftigt, konnte zeigen, dass genetische Wirkungen auf die Entwicklung immer auf einer Wechselwirkung zwischen Genom und Umwelt basieren. Die Annahme, der genetische Einfluss auf die (psychische) Entwicklung sei konstant und nur durch gentechnologische Maßnahmen veränderbar, ist demnach offenbar ein Fehlschluss. Es werden Grundbegriffe der Epigenetik und aktuelle Forschungsergebnisse erörtert. Desweiteren wird diskutiert, ob epigenetische Prozesse die Pathogenese psychischer Störungen beeinflussen und ob diese Prozesse an bestimmte Entwicklungsphasen gebunden sind. Anschließend wird die Epigenetik im Kontext der Klinischen Kinderpsychologie betrachtet. Es wird diskutiert, ob die Epigenetik die Entwicklungspsychopathologie grundlegend verändert und welche Konsequenzen die neuen epigenetischen Erkenntnisse für die Klinische Kinderpsychologie bereithalten.


Epigenetics–revolutionizing developmental psychopathology?

Epigenetics, a discipline concerned with genes in the context of development, has shown that genetic influences on development are always based on an interaction between genome and environment. Therefore, the assumption that the genetic influence on (psychological) development is constant and can only be changed via genetic procedures is wrong. In this article, following a brief introduction to epigenetics, the influence of epigenetic processes on the pathogenesis of psychological disorders and whether these processes are bound to certain phases of development is reviewed. Subsequently, epigenetics is considered in the context of clinical psychology. Based on the findings presented throughout this article it is discussed whether epigenetics represents a revolution in developmental psychopathology and which consequences recent epigenetic findings have for clinical child psychology.

Literatur

  • Asendorpf, J. B. (2012). Verhaltens- und molekulargenetische Grundlagen. In W. Schneider & U. Lindenberger, (Hrsg.), Entwicklungspsychologie (7., veränd. Aufl.). Weinheim: Beltz. First citation in articleGoogle Scholar

  • Bateson, P. , Barker, D. , Clutton-Brock, T. , Deb, D. , D’Udine, B. , Foley, R. A. et al. (2004). Developmental plasticity and human health. Nature, 430, 419 – 421. First citation in articleCrossrefGoogle Scholar

  • Becker, K. B. , McCloskey, L. A. (2002). Attention and conduct problems in children exposed to family violence. American Journal of Orthopsychiatry, 72, 83 – 91. First citation in articleCrossrefGoogle Scholar

  • Bonasio, R. , Tu, S. , Reinberg, D. (2010). Molecular signals of epigenetic states. Science, 330, 612 – 616. First citation in articleCrossrefGoogle Scholar

  • Caspi, A. , McClay, J. , Moffitt, T. E. , Mill, J. , Martin, J. , Craig, I. W. et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851 – 854. First citation in articleCrossrefGoogle Scholar

  • Caspi, A. , Moffitt, T. E. , Cannon, M. , McClay, J. , Murray, R. , Harrington, H. et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the Catechol-O-Methyltransferase gene: Longitudinal evidence of a gene X environment interaction. Biological Psychiatry, 57, 1117 – 1127. First citation in articleCrossrefGoogle Scholar

  • Caspi, A. , Sugden, K. , Moffitt, T. E. , Taylor, A. , Craig, I. W. , Harrington, H. et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386 – 389. First citation in articleCrossrefGoogle Scholar

  • Cavallaro, S. , D’Agata, V. , Manickam, P. , Dufour, F. , Alkon, D. L. (2002). Memory-specific temporal profiles of gene expression in the hippocampus. Proceedings of the National Academy of Sciences, 99, 16279 – 16284. First citation in articleCrossrefGoogle Scholar

  • Dunn, E. C. , Uddin, M. , Subramanian, S. V. , Smoller, J. W. , Galea, S. , Koenen, K. C. (2011). Research review: Gene–environment interaction research in youth depression–a systematic review with recommendations for future research. Journal of Child Psychology and Psychiatry, 52, 1223 – 1238. First citation in articleCrossrefGoogle Scholar

  • Elliott, E. , Ezra-Nevo, G. , Regev, L. , Neufeld-Cohen, A. , Chen, A. (2010). Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nature Neuroscience, 13, 1351 – 1353. First citation in articleCrossrefGoogle Scholar

  • Ernst, C. , Luckner, L. v. (1985). Stellt die Frühkindheit die Weichen?–Eine Kritik der Lehre von der schicksalshaften Bedeutung erster Erlebnisse. Stuttgart: Enke. First citation in articleGoogle Scholar

  • Fischer, A. , Sananbenesi, F. , Wang, X. , Dobbin, M. , Tsai, L.-H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447, 178 – 182. First citation in articleCrossrefGoogle Scholar

  • Fraga, M. F. , Ballestar, E. , Paz, M. F. , Ropero, S. , Setien, F. , Ballestar, M. L. et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 10604 – 10609. First citation in articleCrossrefGoogle Scholar

  • Grande, M. , Lambea, E. , Fajardo, A. , López-Avilés, S. , Kellogg, D. & Aligue, R. (2008). Crosstalk between Nap1 protein and Cds1 checkpoint kinase to maintain chromatin integrity. Biochimica et Biophysica Acta (BBA)–Molecular Cell Research, 1783, 1595 – 1604. First citation in articleCrossrefGoogle Scholar

  • Hake, S. B. , Allis, C. D. (2006). Histone H3 variants and their potential role in indexing mammalian genomes: The „H3 barcode hypothesis”. Proceedings of the National Academy of Sciences, 103, 6428 – 6435. First citation in articleCrossrefGoogle Scholar

  • Heim, C. , Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental Neurology, 233, 102 – 111. First citation in articleCrossrefGoogle Scholar

  • Hyde, L. W. , Bogdan, R. , Hariri, A. R. (2011). Understanding risk for psychopathology through imaging gene–environment interactions. Trends in Cognitive Sciences, 15, 417 – 427. First citation in articleCrossrefGoogle Scholar

  • Isles, A. R. , Wilkinson, L. S. (2000). Imprinted genes, cognition and behaviour. Trends in Cognitive Sciences, 4, 309 – 318. First citation in articleCrossrefGoogle Scholar

  • Jaenisch, R. , Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33, 245 – 254. First citation in articleCrossrefGoogle Scholar

  • Karg, K. , Burmeister, M. , Shedden, K. & Sen, S. (2011). The serotonin transporter promoter variant (5-httlpr), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444 – 454. First citation in articleCrossrefGoogle Scholar

  • Kikusui, T. , Mori, Y. (2009). Behavioural and neurochemical consequences of early weaning in rodents. Journal of Neuroendocrinology, 21, 427 – 431. First citation in articleCrossrefGoogle Scholar

  • Kosztolanyi, G. (2011). Hypothesis: Epigenetic effects will require a review of the genetics of child development. Journal of Community Genetics, 2, 91 – 96. First citation in articleCrossrefGoogle Scholar

  • Kramer, J. M. , van Bokhoven, H. (2009). Genetic and epigenetic defects in mental retardation. The International Journal of Biochemistry: Cell Biology, 41, 96 – 107. First citation in articleCrossrefGoogle Scholar

  • Levenson, J. M. , O’Riordan, K. J. , Brown, K. D. , Trinh, M. A. , Molfese, D. L. , Sweatt, J. D. (2004). Regulation of Histone Acetylation during Memory Formation in the Hippocampus. Journal of Biological Chemistry, 279, 40545 – 40559. First citation in articleCrossrefGoogle Scholar

  • Liu, D. , Diorio, J. , Tannenbaum, B. , Caldji, C. , Francis, D. , Freedman, A. et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659 – 1662. First citation in articleCrossrefGoogle Scholar

  • McCarthy, M. M. , Auger, A. P. , Bale, T. L. , De Vries, G. J. , Dunn, G. A. , Forger, N. G. et al. (2009). The epigenetics of sex differences in the brain. The Journal of Neuroscience, 29, 12815 – 12823. First citation in articleCrossrefGoogle Scholar

  • McEwen, B. (2002). Estrogen actions throughout the brain. Recent Progress in Hormone Research, 57, 357 – 384. First citation in articleCrossrefGoogle Scholar

  • McGowan, P. O. Sasaki , A., D’Alessio , A. C., Dymov , S., Labonte , B., Szyf , M. et al., (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342 – 348. First citation in articleCrossrefGoogle Scholar

  • McGowan, P. O. , Szyf, M. (2010). The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiology of Disease, 39, 66 – 72. First citation in articleCrossrefGoogle Scholar

  • Mill, J. , Petronis, A. (2007). Molecular studies of major depressive disorder: the epigenetic perspective. Molecular Psychiatry, 12, 799 – 814. First citation in articleCrossrefGoogle Scholar

  • Miller, C. A. , Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857 – 869. First citation in articleCrossrefGoogle Scholar

  • Mueller, B. R. , Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. The Journal of Neuroscience, 28, 9055 – 9065. First citation in articleCrossrefGoogle Scholar

  • Murgatroyd, C. , Patchev, A. V. , Wu, Y. , Micale, V. , Bockmuhl, Y. , Fischer, D. et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 1559 – 1566. First citation in articleCrossrefGoogle Scholar

  • Murgatroyd, C. , Spengler, D. (2011). Epigenetics of early child development. Frontiers in Psychiatry, 16, 1 – 15. First citation in articleGoogle Scholar

  • Noeker, M. , Petermann, F. (2008). Resilienz: Funktionale Adaptation an widrige Umgebungsbedingungen. Zeitschrift für Psychiatrie, Psychologie und Psychotherapie, 56, 255 – 263. First citation in articleLinkGoogle Scholar

  • Oberlander, T. F. , Weinberg, J. , Papsdorf, M. , Grunau, R. , Misri, S. & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97 – 106. First citation in articleCrossrefGoogle Scholar

  • Peleg, S. , Sananbenesi, F. , Zovoilis, A. , Burkhardt, S. , Bahari-Javan, S. , Agis-Balboa, R. C. et al. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 328, 753 – 756. First citation in articleCrossrefGoogle Scholar

  • Petermann, U. , Petermann, F. , Damm, F. (2008). Entwicklungspsychopathologie der ersten Lebensjahre. Zeitschrift für Psychiatrie, Psychologie und Psychotherapie, 56, 243 – 253. First citation in articleLinkGoogle Scholar

  • Petermann, U. , Reinartz, H. , Petermann, F. (2002). IDL 0 – 2. Ein Explorationsbogen zur Identifizierung individueller Lernwege in der Sozialentwicklung. Zeitschrift für Klinische Psychologie, Psychiatrie und Psychotherapie, 50, 427 – 457. First citation in articleGoogle Scholar

  • Pryce, C. R. (2008). Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter-species and intra-species differences. Brain Research Reviews, 57, 596 – 605. First citation in articleCrossrefGoogle Scholar

  • Radtke, K. M. , Ruf, M. , Gunter, H. M. , Dohrmann, K. , Schauer, M. , Meyer, A. et al. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21. First citation in articleCrossrefGoogle Scholar

  • Roth, T. L. , David Sweatt, J. (2011). Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. Journal of Child Psychology and Psychiatry, 52, 398 – 408. First citation in articleCrossrefGoogle Scholar

  • Schlinzig, T. , Johansson, S. , Gunnar, A. , Ekström, T. J. , Norman, M. (2009). Epigenetic modulation at birth–altered DNA-methylation in white blood cells after Caesarean section. Acta Pædiatrica, 98, 1096 – 1099. First citation in articleCrossrefGoogle Scholar

  • Schmid, M. , Fegert, J. M. , Petermann, F. (2010). Traumaentwicklungsstörung: Pro und Contra. Kindheit und Entwicklung, 19, 47 – 63. First citation in articleLinkGoogle Scholar

  • Schmidt, S. , Petermann, F. (2009). Developmental psychopathology: Attention Deficit Hyperactivity Disorder (ADHD). BMC Psychiatry, 9, Art. Nr. 58. First citation in articleCrossrefGoogle Scholar

  • Szyf, M. (2009). The early life environment and the epigenome. Biochimica et Biophysica Acta (BBA)–General Subjects, 1790, 878 – 885. First citation in articleCrossrefGoogle Scholar

  • Szyf, M. , Weaver, I. , Meaney, M. (2007). Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology, 24, 9 – 19. First citation in articleCrossrefGoogle Scholar

  • Tsankova, N. M. , Berton, O. , Renthal, W. , Kumar, A. , Neve, R. L. , Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9, 519 – 525. First citation in articleCrossrefGoogle Scholar

  • Uddin, M. , Aiello, A. E. , Wildman, D. E. , Koenen, K. C. , Pawelec, G. , de los Santos, R. et al. (2010). Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proceedings of the National Academy of Sciences, 107, 9470 – 9475. First citation in articleCrossrefGoogle Scholar

  • Van de Vijver, G. , Van Speybroeck, L. , de Waele, D. (2002). Epigenetics: A challenge for genetics, evolution, and development? Annals of the New York Academy of Sciences, 981, 1 – 6. First citation in articleCrossrefGoogle Scholar

  • Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18 – 20. First citation in articleGoogle Scholar

  • Waterland, R. A. (2009). Is epigenetics an important link between early life events and adult disease? Hormone Research in Paediatrics, 71, 13 – 16. First citation in articleCrossrefGoogle Scholar

  • Weaver, I. C. G. (2007). Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: Let’s call the whole thing off. Epigenetics, 2, 22 – 28. First citation in articleCrossrefGoogle Scholar

  • Weaver, I. C. G. , Cervoni, N. , Champagne, F. A. , D’Alessio, A. C. , Sharma, S. , Seckl, J. R. et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847 – 854. First citation in articleCrossrefGoogle Scholar

  • Young, E. A. , Korszun, A. (2002). The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinology and Metabolism Clinics of North America, 31, 63 – 78. First citation in articleCrossrefGoogle Scholar

  • Zhang, T. Y. , Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439 – 466. First citation in articleCrossrefGoogle Scholar