Skip to main content
Articles

The Bilateral Origin of Movement-Related Potentials Preceding Unilateral Actions

Published Online:https://doi.org/10.1027/0269-8803.18.23.140

Abstract It is as yet unclear why a unilateral self-paced movement in human and nonhuman primates is preceded by a bilateral Bereitschaftspotential (BP) or readiness potential (RP). The RP consists of an early symmetrical part (termed BP1 or RP), presumably of supplementary motor area (SMA) origin, and a later contralaterally dominant part (termed BP2 or NS'), to which the primary motor cortex (M1) is thought to contribute. Apart from the SMA there are other motor areas in the mesial cortex, which might provide additional sources for these slow waves. Although bilateral intracortical sources of the RP are found in the premotor cortex (Sasaki & Gemba, 1991), they play nearly any role in most discussions on the RP. Recently the very existence of the ipsilateral RP over MI has been doubted. RP recordings of two patients with an intracerebral electrode in the ventro-intermedius nucleus (Vim) of the thalamus are shown, suggesting that the ipsilateral RP is not the consequence of volume conduction or signal transmission via the corpus callosum. Rather they point to a subcortical source, from where the ipsilateral cortex is activated. Anatomical and recent RP recordings from Vim and subthalamic nucleus seem to support this interpretation.

References

  • Aizawa, H. , Mushiake, H. , Inase, M. , Tanji, J. (1990). An output zone of the monkey primary motor cortex specialized for bilateral hand movement.. Experimental Brain Research, 82, 219– 221 . First citation in articleCrossrefGoogle Scholar

  • Beaubaton, D. , Trouche, E. , Amato, G. (1980). Dentate and pallidal control of goal-directed movement in monkeys. In G.E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp.315-327). Amsterdam: North Holland . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. (2003). CNV and SPN: Indices of anticipatory behavior. In M. Jahanshahi & M. Hallet (Eds.), The Bereitschaftspotential (pp.207-227). New York: Kluwer/Plenum . First citation in articleGoogle Scholar

  • Brunia, C.H.M. , Boelhouwer, A.J.W. (1988). Reflexes as a tool: A window in the central nervous system. In P.K. Ackles, J.R. Jennings, & M.G.H. Coles (Eds.), Advances in psychophysiology (Vol.3, pp.1-67). Greenwich, CT: JAI . First citation in articleGoogle Scholar

  • Brunia, C.H.M. , Scheirs, J.G.M. , Haagh, S.A.V.M. (1982). Changes of Achilles tendon reflex amplitudes during a fixed foreperiod of for seconds. Psychophysiology, 19, 63– 70 . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. , Bosch, D.A. , Speelman, J.D. , van den Berg-Lenssen, M.M.C. , van Boxtel, G.J.M. (2000). The thalamic contribution to the emergence of the readiness potential. In Z. Ambler, S. Nevsímalová, Z. Kadanka, & P.M. Rossini (Eds.), Clinical neurophysiology at the beginning of the 21st century (pp.207-209). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Ceballos-Baumann, A.O. , Boecker, H. , Bartenstein, P. , von Falkenhayn, I. , Riescher, H. , Conrad, B. , Moringlane, J.R. , Alesch, F. (1999). A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease. Archives of Neurology, 56, 997– 1003 . First citation in articleCrossrefGoogle Scholar

  • Chen, R. , Gerloff, C. , Hallett, M. , Cohen, L.G. (1997). Involvement of the ipsilateral motor cortex in finger movements of different complexities. Annals of Neurology, 41, 247– 254 . First citation in articleCrossrefGoogle Scholar

  • Cunnington, R. , Iansek, R. , Bradshaw, J.L. , Philips, J.G. (1995). Movement-related potentials in Parkinson's disease: Presence & predictability of temporal & spatial cues. Brain, 118, 935– 950 . First citation in articleCrossrefGoogle Scholar

  • Deecke, L. , Kornhuber, H. (1977). Cerebral potentials & the initiation of voluntary movement. In J.E. Desmedt (Ed.), Attention, voluntary contraction & slow potential shifts (pp.132- 150). Basel: Karger . First citation in articleGoogle Scholar

  • Escola, L. , Michelet, T. , Macia, F. , Guehl, D. , Bioulac, B. , Burbaud, P. (2003). Disruption of information processing in the supplementary motor area of the MPTP-treated monkey. Brain, 126, 95– 114 . First citation in articleCrossrefGoogle Scholar

  • Evarts, E.V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14– 27 . First citation in articleGoogle Scholar

  • Gazzaniga, M.S. , Hillyard, S. (1972). Attention mechanisms following brain dissection. In S. Kornblum (Ed.), Attention and performance (Vol.IV, pp.221-238). New York: Academic Press . First citation in articleGoogle Scholar

  • Gemba, H. , Sasaki, K. (1990). Potential related to no-go reaction in go/no-go hand movement with discrimination between tone stimuli of different frequencies in the monkey. Brain Research, 537, 340– 344 . First citation in articleCrossrefGoogle Scholar

  • Gemba, H. , Sasaki, K. , Hashimoto, S. (1980). Distribution of premovement slow cortical potentials associated with self-paced hand movements in monkeys. Neuroscience Letters, 20, 159– 163 . First citation in articleCrossrefGoogle Scholar

  • Gerschlager, W. , Alesch, F. , Cunnington, R. , Deecke, L. , Dirnberger, G. , Endl, W. , Lindinger, G. , Lang, W. (1999). Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson's disease: An electrophysiological study of the contingent negative variation. Brain, 122, 2365– 2373 . First citation in articleCrossrefGoogle Scholar

  • Goldman-Rakic, P.S. (1987). Motor control function of the prefrontal cortex. In R. Porter (Ed.), Motor areas of the cerebral cortex. Ciba symposium 132 (pp.187-200). Chichester: Wiley . First citation in articleGoogle Scholar

  • Hazrati, L.N. , Parent, A. Contralateral pallidothalamic and pallidotegmental projections in primates: An anterograde and retrograde labeling study. Brain Research, 567, 212– 223 . First citation in articleCrossrefGoogle Scholar

  • Hershey, T. , Revilla, F.J. , Wernle, A.R. , McGee-Minnich, L. , Antenor, J.V. , Videen, T.O. , Dowling, J.L. , Mink, J.W. , Perlmutter, J.S. (2003). Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology, 61, 816– 821 . First citation in articleCrossrefGoogle Scholar

  • Hillyard, S.A. (1973). The CNV and human Behavior. In W.C. McCallum & J. Knott (Eds.), Event-related slow potentials of the brain: Their relation to behavior (Electroencephalography & Clinical Neurophysiology, Supplement 33, pp.161-171) . First citation in articleGoogle Scholar

  • Ikeda, A. , Shibasaki, H. (2003). Generator mechanisms of Bereitschaftspotentials as studied by epicortical recording in patients with intractable partial epilepsy. In M. Jahanshahi & M. Hallet, The Bereitschaftspotential (pp.45-59). New York: Kluwer/Plenum . First citation in articleCrossrefGoogle Scholar

  • Ikeda, A. , Shibasaki, H. , Nagamine, T. , Terada, K. , Kaji, R. , Fukuyama, H. , Kimura, J. (1994). Dissociation between contingent negative variation & Bereitschaftspotential in a patient with cerebellar efferent lesion. Electroencephalography & Clinical Neurophysiology, 90, 359– 364 . First citation in articleCrossrefGoogle Scholar

  • Ikeda, A. , Shibasaki, H. , Kaji, R. , Terada, K. , Nagamine, T. , Honda, M. , Kimura, J. (1997). Dissociation between contingent negative variation & Bereitschaftspotential in a patient with Parkinsonism. Electroencephalography & Clinical Neurophysiology, 102, 142– 151 . First citation in articleCrossrefGoogle Scholar

  • Jahanshahi, M. , Hallet, M. (2003). The Bereitschaftspotential . New York: Kluwer/Plenum . First citation in articleCrossrefGoogle Scholar

  • Jahanshahi, M. , Jenkins, I.H. , Brown, R.G. , Marsden, C.D. , Passingham, R.E. , Brooks, D.J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of blood flow with PET & movement-related potentials in normal & Parkinson's disease subjects. Brain, 118, 913– 933 . First citation in articleCrossrefGoogle Scholar

  • Kalaska, J.F. , Crammond, D.J. (1995). Deciding not to go: Neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cerebral Cortex, 5, 410– 428 . First citation in articleCrossrefGoogle Scholar

  • Kornhuber, H.H. , Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale ‘Brain potential changes during arbitrary and passive movements in Humans: Bereitschaftspotential and reafferent potentials’. Pflügers Archiv, 284, 1– 17 . First citation in articleCrossrefGoogle Scholar

  • Krack, P. , Dostrovsky, J. , Ilinsky, I. , Kultas-Ilinsky, K. , Lenz, F. , Lozano, A. , Vitek, J. (2002). Surgery of the motor thalamus: Problems with present nomenclature. Movement Disorders, 17(Suppl.3), S9– S15 . First citation in articleGoogle Scholar

  • Künzle, H. (1975). Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Research, 88, 195– . First citation in articleCrossrefGoogle Scholar

  • Künzle, H. (1978). An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain, Behavior and Evolution, 15, 185– 234 . First citation in articleCrossrefGoogle Scholar

  • Limousin, P. , Pollak, P. , Benazzouz, A. , Hoffmann, D. , Le Bas, J-F. , Brousolle, E. , Perret, J.E. , Benabid, A.L. (1995). Effect on Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. The Lancet, 345, 91– 95 . First citation in articleCrossrefGoogle Scholar

  • Luppino, G. , Matelli, M. , Camarda, R. , Rizolatti, G. (1993). Corticocortical connections of area F3 (SMA proper) & area F6 (pre-SMA) in the macaque monkey. Journal of Comparative Neurology, 338, 114– 140 . First citation in articleCrossrefGoogle Scholar

  • Mauritz, K-H. , Wise, S.P. (1986). Premotor cortex of the rhesus monkey: Neuronal activity in anticipation of predictable events. Experimental Brain Research, 61, 229– 244 . First citation in articleCrossrefGoogle Scholar

  • MacKinnon, C.D. (2003). Recording of movement-related potentials combined with PET, fMRI or MEG. In M. Jahanshahi & M. Hallet, The Bereitschaftspotential (pp.95-111). New York: Kluwer/Plenum . First citation in articleCrossrefGoogle Scholar

  • Meyer-Lohmann, J. , Hore, J. , Brooks, V.B. (1977). Cerebellar participation in generation of prompt arm movements. Journal of Physiology, 40, 1038– 1050 . First citation in articleGoogle Scholar

  • Middletown, F.A. , Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236– 250 . First citation in articleCrossrefGoogle Scholar

  • Molinari, M. , Minciacchi, D. , Bentivoglio, M. , Macchi, G. (1985). Efferent fibers from the motor cortex terminate bilaterally in the thalamus of rats and cats. Experimental Brain Research, 57, 305– 312 . First citation in articleCrossrefGoogle Scholar

  • Paradiso, G. , Saint-Cyr, J.A. , Lozano, A.M. , Lang, A.E. , Chen, R. (2003). Involvement of the human subthalamic nucleus in movement preparation. Neurology, 61, 1538– 1545 . First citation in articleCrossrefGoogle Scholar

  • Paradiso, G. , Cunic, D. , Chen, R. (2004). Involvement of subcortical structures in the preparation of self-paced movement. Journal of Psychophysiology, this volume . First citation in articleLinkGoogle Scholar

  • Picard, N. , Strick, P.L. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6, 342– 353 . First citation in articleCrossrefGoogle Scholar

  • Rebert, C.S. (1977). Intracerebral slow potential changes in monkeys during the foreperiod of reaction time. In J.E. Desmedt (Ed.), Attention, voluntary contraction and slow potential shifts (pp.242-253). Basel: Karger . First citation in articleGoogle Scholar

  • Rektor, I. (2003). Intracerebral recordings of the Bereitschaftspotential and related potentials in cortical and subcortical structures in human subjects. In M. Jahanshahi & M. Hallet, The Bereitschaftspotential (pp.61-77). New York: Kluwer/Plenum . First citation in articleCrossrefGoogle Scholar

  • Rektor, I. , Bares, M. , Kubova, D. (2001a). Movement-related potentials in the basal ganglia: A SEEG readiness potential study. Electroencephalography & Clinical Neurophysiology, 112, 2146– 2153 . First citation in articleCrossrefGoogle Scholar

  • Rektor, I. , Bares, M. , Kanovsky, P. , Kukleta, M. (2001b). Intracerebral recordings of readiness potential induced by a complex motor task. Movement Disorders, 16, 698– 704 . First citation in articleCrossrefGoogle Scholar

  • Rouzaire-Dubois, B. , Scarnati, E. (1985). Bilateral corticosubthalamic nucleus projections: An electrophysiological study in rats with chronic cerebral lesions. Neuroscience, 15, 69– 79 . First citation in articleCrossrefGoogle Scholar

  • Sasaki, K. , Gemba, H. (1986). Electrical activity in the prefrontal cortex specific to no-go reaction of conditioned hand movement with color discrimination in the monkey. Experimental Brain Research, 64, 603– 606 . First citation in articleCrossrefGoogle Scholar

  • Sasaki, K. , Gemba, H. (1991). Cortical potentials associated with voluntary movements in monkeys. In C.H.M. Brunia, G. Mulder, & M.N. Verbaten (Eds.), Event-related brain research (pp.80-96). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Sasaki, K. , Gemba, H. , Mizuno, N. (1979). Cortical field potentials preceding visually initiated hand movements and cerebellar actions in the monkey. Experimental Brain Research, 46, 29– 36 . First citation in articleCrossrefGoogle Scholar

  • Schuurman, P.R. , Bosch, D.A. , Bossuyt, P.M.M. , Bonsel, G.J. , van Someren, E.J.W. , de Bie, R.M.A. , Merkus, M.P. , Speelman, J.D. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. New England Journal of Medicine, 342, 461– 468 . First citation in articleCrossrefGoogle Scholar

  • Shibasaki, H. , Shima, F. , Kuroiwa, Y. (1978). Clinical studies of the movement-related cortical potential (MP). The relationship between the dentato-rubro-thalamic pathway and the readiness potential (RP). Journal of Neurology, 219, 15– 25 . First citation in articleCrossrefGoogle Scholar

  • Shibasaki, H. , Barrett, G. , Neshige, R. , Hirata, I. , Tomoda, H. (1986). Volitional movement is not preceded by cortical slow negativity in cerebellar dentate lesion in man. Brain Research, 368, 361– 365 . First citation in articleCrossrefGoogle Scholar

  • Strick, P.L. (1976). Activity of ventrolateral thalamic neurons during arm movement. Journal of Neurophysiology, 39, 1032– 1044 . First citation in articleGoogle Scholar

  • Thatch, W.T. (1987). Cerebellar inputs to motor cortex. In R. Porter (Ed.), Motor areas of the cerebral cortex. Ciba symposium 132 (pp.201-215). Chichester: Wiley . First citation in articleGoogle Scholar

  • Trouche, E. , Beaubaton, D. (1980). Initiation of goal-directed movement in the monkey. Experimental Brain Research, 40, 311– 321 . First citation in articleCrossrefGoogle Scholar

  • Van Boxtel, G.J.M. , Böcker, K.B.E. (2004). Cortical measures of anticipation. Journal of Psychophysiology, this issue . First citation in articleLinkGoogle Scholar

  • Verleger, R. (2004). Malfunctions of central control of movement studied with slow brain potentials in neurological patients. Journal of Psychophysiology, this issue . First citation in articleLinkGoogle Scholar

  • Vitek, J.L. (2002). Mechanisms of deep brain stimulation: Excitation or inhibition. Movement Disorders, 17(Suppl.3), S69– S72 . First citation in articleGoogle Scholar

  • Walter, W.G. , Cooper, R. , Aldridge, V.J. , McCallum, W.C. , Winter, A.L. (1964). Contingent Negative Variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380– 384 . First citation in articleCrossrefGoogle Scholar

  • Woods, S.P. , Fields, J.A. , Tröster, A.I. (2002). Neuropsychological sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: A critical review. Neuropsychology Review, 12, 111– 126 . First citation in articleCrossrefGoogle Scholar

  • Zappoli, R. (2003). Permanent or transitory effects on neurocognitive components of the CNV complex induced by brain dysfunctions, lesions, and ablations in humans. International Journal of Psychophysiology, 48, 189– 220 . First citation in articleCrossrefGoogle Scholar